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Abstract— In this paper, we present Rapid Activity Prediction
Through Object-oriented Regression (RAPTOR), a scalable
method for performing rapid, real-time activity recognition and
prediction that achieves state-of-the-art classification accuracy
on both a generic human activity dataset and two domain-
specific collaborative robotics manufacturing datasets. Our
approach is designed to be human-interpretable: able to provide
explanations for its reasoning such that non-experts can better
understand and improve its activity models. We incorporate
methods to increase RAPTOR’s resilience against confusion
due to temporal variations, as well as against learning false
correlations between features. We report full and partial tra-
jectory classification results across three datasets and conclude
by demonstrating our model’s ability to provide interpretable
explanations of its reasoning using outlier detection techniques.

I. INTRODUCTION

Activity recognition is a fundamental research challenge
within the fields of robotics and computer vision, with
potentially wide ranging impact on human-robot interaction,
multi-agent systems, security surveillance, home automa-
tion, and manufacturing. In human-robot collaboration, the
ability of a team member to quickly and reliably interpret
teammates’ actions and intentions is critical to achieving
satisfactory robot performance and team fluency. This type of
anticipatory information can improve task completion time,
idle time, concurrent motion, and human-robot separation
distance during human-robot collaboration [1], [2], [3], [4],
[5], [6], [7]. Thus, rapid classification is a key attribute of
an effective approach to activity recognition, as it allows for
real-time situational awareness at the speed of the available
sensing hardware. However, activity recognition presents
substantial challenges that must be addressed before robust
human-robot teaming can be realized in practice.

Although a variety of innovative machine learning ap-
proaches have been proposed to support activity recognition
during human-robot collaboration [8], [9], [10], [11], the rea-
soning behind these classifiers’ decisions is not necessarily
interpretable to a human partner. With these methods a hu-
man may be able to inspect individual activity classification
likelihoods and consider them relative to one another, but he
or she would not be able to identify which specific aspects
of a demonstration were responsible for the misclassification
without substantial additional effort and a background in
machine learning.

This poses challenges for effective communication of the
robot’s progress and intent, which can impede the devel-
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opment of shared mental models among team members
[12], [13], [14]. With process efficiency and safety at stake
during live task co-execution [15], [16], it is a priority
that the mechanisms affecting the behavior and control of
autonomous systems be transparent to human co-workers. To
this end, we present a novel approach to activity recognition
during collaborative robotics tasks, designed to provide both
rapid online action classification and human-interpretable
justifications for decisions and reasoning.

Our work introduces a scalable mechanism for rapid, on-
line activity recognition that achieves state-of-the-art results
for both general and domain-specific datasets, enabling a
robot to quickly and accurately plan for and around the
behaviors of its co-workers. The basis of our approach is
the use of classifier ensembles for each activity, wherein we
form and combine hypotheses from a collection of indepen-
dent multivariate Gaussian Mixture Models that characterize
the motion patterns of individual objects (e.g., joints) in
a given scene. We construct these object-oriented motion
models within a series of time windows over the provided
training trajectories to capture local patterns in the data
while minimizing false correlations between objects. We also
introduce a modified form of max-pooling [17] to further
increase resilience to temporal misalignment. Our method
performs automated feature selection within each activity’s
classifier ensemble in order to identify the most relevant and
informative object models for each time window.

The object-oriented nature of our approach facilitates
anomaly detection and diagnosis, enabling each activity
model to provide its own description of differences or
similarities to queried activity demonstrations. To mitigate
scaling issues for training and testing, our classifier architec-
ture is highly parallel, allowing for expedited training times
and rapid evaluation, even when considering between a large
variety of activity classes.

Our proposed method demonstrates favorable generaliza-
tion across variations within activities, exhibiting cutting-
edge performance on cross-subject evaluations, where classi-
fiers are tested on individuals they have not been trained on.
Our approach exhibits resilience against misclassifications
due to similarities across activities, placing greater weight on
features that differentiate similar activities from one another.
We maintain a robustness to time variance within activity
demonstrations, enabling our classifier to overcome ambigu-
ities arising from temporal inconsistencies such as delays or
hurried demonstrations, while preserving intermediate pose-
ordering information such as recognizing that a seated pose
was held prior to a standing position. Operating solely on



skeletal and object position data, our approach achieves high
classification accuracies even in the absence of environment
descriptors typically embedded within the RGB(+D) camera
imagery that often accompanies such features [9], allowing
us to minimize bandwidth requirements when performing
activity recognition using distributed computation.

In this work, we evaluate our method in both live and
offline settings across three activity datasets covering a wide
range of behaviors. We conclude by showcasing the inter-
pretable aspects of our classifier, demonstrating its ability
to summarize anomalies within its input data in a human-
interpretable manner.

II. RELATED WORK

Activity recognition is commonly discussed in literature as
a process of pose discovery – learning the most informative
intermediate positions occupied during an activity – followed
by a process of sequence classification over the recognized
poses from this set. Defining activities explicitly as an
evolution of spatial features (pose configurations) irrespective
of relative timing introduces complexity with respect to
handling intra-activity temporal disparities. To overcome
this, state-of-the-art classifiers introduce novel methods of
modeling the interplay between spatial and temporal aspects
of activities. In this section, we review works that have in-
corporated skeletal and/or object position data – in particular,
recent contributions that utilize both implicit and explicit
approaches to the pose discovery problem.

A number of promising results have emerged through
clustering-based pose discovery. Xia et al. [11] introduced
the histograms of 3D joint locations (HOJ3D) method of
activity recognition. In their approach, intermediate activ-
ity poses are found by re-projecting clustered joint loca-
tions using latent Dirichlet analysis, which are then mod-
eled sequentially by activity-specific hidden Markov models
(HMMs). Their work introduced and was evaluated against
the UTKinect activity dataset, a standard activity recognition
benchmark we use here as a point of comparison for our
own results. Chrungoo et al. [18] also utilized histograms,
grouping direction vectors from fixed temporal windows.
Gaglio et al. [19] took a k-means clustering approach to
intermediate pose discovery, sampling from subsets of train-
ing data to determine key pose configurations. In this work,
the authors use a support vector machine (SVM) to find
optimally separated poses in order to minimize inter-activity
confusion.

Other authors have contributed high performing work
that implicitly encodes key pose information. For example,
Devanne et al. [20] modeled skeletal pose transitions as
curves through a Riemannian manifold. In this work, activity
trajectories are projected into a higher dimensional space,
where an elastic metric used to compare various curve
shapes is combined with a k-nearest neighbor classification
strategy. A similar approach was pursued by Slama et al.
[21], who classified activities with a linear SVM over bundles
of vectors tangent to a given trajectory’s position on a learned
Grassmann manifold. In this approach, temporal modeling

and classification are performed using a combination of time
warping, a Fourier temporal pyramid trajectory representa-
tion, and a linear SVM classifier.

Presti et al. [22] used linear time invariant (LTI) sys-
tems to model subsets of activity demonstrations within
fixed size sliding temporal windows, utilizing trained HMMs
on the global space of LTIs for classification. A sliding
window technique was also used by Gori et al. [9], who
applied learned 1-D Gaussian filters through time over fea-
ture patches extracted from interactions between joint pairs,
allowing for quick and robust identification of individual
activities and multi-party interactions. Deep convolutional
neural networks have also been applied within this domain,
utilizing depth and motion information alongside feature
transformations that convert the problem of activity recogni-
tion into one more closely resembling static image classifi-
cation [23].

Pérez-D’Arpino et al. [24] also utilize a Gaussian method,
implicitly modeling intermediate poses with multivariate
Gaussian distributions over feature means at each time
step. The authors used dynamic time warping (DTW) to
achieve a canonical length for each activity, alleviating
issues stemming from temporal deviations. They evaluated
their classifier in a live human-robot collaborative setting,
demonstrating rapid, accurate activity prediction during hu-
man reaching tasks using only small portions early in the
segmented activity trajectory, enabling a robot to accurately
anticipate human movement.

The lack of human-interpretable, online activity classifiers
represents a key gap in the existing literature. Within the
scope of human-robot collaboration, the ability of a human
to gain insight into a robot collaborator’s model of an ac-
tivity can have important implications for worker safety and
team fluency. When applied to active learning, interpretable
models could allow for the presentation of more informative
training examples, leading to improved task performance
[25]. Unlike the ensembles of position-based models we
present here, techniques that utilize dimensionality reduction
or re-projection onto high dimensional geometric manifolds
sacrifice the ability to directly summarize models into rep-
resentations intuitive for humans. With respect to online
classification, only Pérez D’Arpino et al. [24] and Slama
et al. [21] address activity prediction, performing activity
recognition using only a partial trajectory. In this work,
we present best-in-class results in online classification with
a human-interpretable approach that generalizes to more
diverse activity classes than prior work while maintaining
real-time performance on commodity computing hardware.

III. METHOD

Here, we introduce RAPTOR (Rapid Activity Predic-
tion Through Object-oriented Regression), a highly parallel
classifier for online activity recognition that achieves state-
of-the-art results with both general and domain-specific
datasets. Our approach allows for rapid training and testing,
as each activity model and its constituent components can
be trained and tested independently. Our proposed classifier



Fig. 1: (Left) A sketch of the training pipeline for RAPTOR classifiers. Trajectories are segmented into temporal windows
within each activity model, where GMMs are fit for each object (feature subset). Object GMMs are weighted within each
temporal segment through a Random Forest-driven feature selection process. (Right) A sketch of the RAPTOR classification
pipeline. Input trajectories are passed to each activity model, where they are segmented according to the model’s temporal
window parameters, scored per segment by object GMMs, and combined into a single likelihood score per activity.

operates effectively on derived skeletal and position fea-
tures (without the source image or point cloud), minimizing
the bandwidth required for operation at scale over a large
computing hardware network. Drawing inspiration from the
success of Object Oriented Markov Decision Processes [26]
in reinforcement learning, we factor our input feature space
into ‘objects’ as a mechanism for improving classifier gener-
alization and avoiding false correlations between potentially
unrelated features within the training data.

Our algorithm performs activity classification on an input
trajectory segment presented as an N ×D input matrix with
row vectors of D floating point values for N time steps. The
object-oriented approach we have taken factors input matri-
ces into feature collections per a mapping function specified
at initialization of the form f : object → feature indices.
For example, the UT-Kinect [11] dataset contains trajectories
of 60 features per time step, belonging to 20 joints. On
this dataset, our algorithm isolates sets of column vectors
from the input matrices using masks corresponding to the
position feature indices (X,Y,Z coordinates) of each joint,
transforming the input trajectory from a single N × 60
matrix to 20 non-overlapping N × 3 matrices. This yields a
collection of objects that independently represent each joint’s
motion over time. In a smart factory, these input features may
resemble tracking markers from a motion capture system for
each worker and parts bin located on the factory floor. This
object segmentation affords our classifier benefits for both
generalization and interpretation.

Given a motion trajectory, RAPTOR outputs a vector
of classification likelihoods for each known activity class.
Unlike the classification approaches referenced in Section II,
our method also affords the capability to query each activity
model for an interpretable explanation of anomalies in the
input signal (e.g., “The beginning of the provided trajectory

fits my model for ‘install widget’ exceptionally well, but
for most of the end of the trajectory, the features associated
with widget position are very unfamilar.”). In the remainder
of this section, we present details about our classifier’s archi-
tecture, training process, classification pipeline, and anomaly
explanation capability.

A. Classifier Architecture
Each activity model within RAPTOR is trained indepen-

dently as a collection of temporally segmented ensembles
of Gaussian Mixture Models (GMMs), as shown in Figure
1. Each temporal segment contains its own ensemble of
classifiers, locally modeling sequences of the object motions
most relevant for distinguishing its target activity from other
activities. A weighted combination of likelihood estimations
from each classifier is computed at each time segment to
generate a net likelihood measurement for the activity class.
The maximum likelihood estimate over all activity models is
then subsequently chosen as the predicted activity class (Eq.
1). As each activity model is independent of each activity
model, they can be distributed across multiple devices, only
incurring the overhead of transmitting trajectory matrices and
likelihood scores.

For a library of activities A, object GMM models O,
object weights w, temporal segment intervals T , and object
to feature index mapping function F , we define the activity
recognition problem as determining the a ∈ A for a given
input trajectory x that solves the following:

(1)

arg max
a ∈A

1

|Ta|
·
∑
t∈Ta

(

|O|∑
i=0

wta,i)
−1

·
|O|∑
i=0

wta,i · (lnL(x[t, FOi
]|Ota,i))



L is the standard GMM likelihood function given an input
trajectory x, object to feature index mapping function F , and
object model o with GMM component count oc, means µo,
and covariance matrices Σo, defined as follows:

L(x|o) =

oc∑
i

wo,i
exp

{−1
2 · (x− µo,i)

ᵀ · Σ−1o,i · (x− µo,i)
}

(2π)|Fo|/2 · |Σo,i|1/2
(2)

B. Activity Model Training

RAPTOR activity models are trained with a collection of
labeled trajectory examples. Each individual activity model
is divided into temporal segments, requiring the specification
of width and stride parameters that govern the coverage and
spacing of each segment (as a percentage of the overall
trajectory), respectively. Hyper-parameter optimization tech-
niques or prior knowledge from a subject matter expert could
be used to tune these parameters for each activity to improve
classification results. Within each temporal segment, a GMM
for each object is fit using Expectation-Maximization over
the relevant subset of each training trajectory matrix: the
rows correspond to that temporal segment (e.g., the first
width% of every training example) and columns correspond
to that object’s features (e.g., the X,Y,Z position of a human’s
torso).

Once object models have been trained for each temporal
segment, our algorithm performs feature selection as de-
scribed in Section III-C. This process identifies the most
informative object models within each segment and weights
them relative to one another. In order to overcome temporal
variations not encountered in training, we modify Eq. 1
with a method inspired by pooling techniques in the Neural
Network literature [17], which we describe further in Section
III-D.

A key design criteria of online activity recognition is the
ability to rapidly classify input trajectories. As the compu-
tation time of our classifier scales as a function of activity
class count, temporal window count, and object count, it may
become computationally infeasible to evaluate all relevant
models at the same frequency as the sensor inputs using a
single device. In this case, we propose obtaining a lower-
fidelity likelihood estimate by fitting a single GMM to the
combined features of all relevant objects at each segment and
only maintaining this single GMM per segment at test time.
This risks overfitting the activity by improperly correlating
features, but also reduces the number of models evaluated.

C. Feature Selection

As we are taking an object oriented approach in order
to avoid learning false correlations between features, care
must be taken to avoid erring too far toward assuming naı̈ve
independence between all features. RAPTOR utilizes a two
phase feature selection process in an effort to isolate the
most informative objects for classifying each activity. The
first phase of this process involves computing two new sets
of objects. The first object set is generated from an ex-
tended feature vector consisting of pairwise object distances

computed over the input data. The second set is created
from pairwise combinations of objects originally defined in
the mapping function F , introducing a total of |O|2−|O|
new objects to model at each temporal segment per activity
model. The second phase of this process involves paring
down the number of object models used in each temporal
segment, such that only the most informative subset is used.

For each temporal segment of each activity model, a
two-class Random Forest Classifier (RFC) [27] is used to
discriminate between examples of the target class {1} and all
other activity classes {-1} using a feature vector comprised
of the likelihood scores output from each object model.
Therefore, each RFC is trained to perform the function f :
R|O| → {−1, 1}, using the relevant temporal window from
each training trajectory across all available activity classes.
As there will be substantially fewer instances of the target
class, it is important to employ class weighting such that
correct classifications of the underrepresented target class
are prioritized over correct classifications of non-target class
samples during training. The top

√
|O| features are kept from

the RFC at each temporal segment (corresponding to the
most informative objects), weighting them proportionately to
their importance such that at each segment t,

∑|O|
i=0 w

t
a,i = 1.

D. Sample Time Variance

Temporal scaling represents a challenging problem for
activity recognition: classifiers must be resilient to delays
and natural differences in pace between agents while si-
multaneously taking care not to discard pose ordering or
relevant velocity information. One approach that has been
used to overcome translational variance in image recognition
is max-pooling [17], a process in which a sliding window
passes over regions of an image, outputting only the largest
value found within that window. As temporal variance in
time-series data can be framed as analogous to translational
variance in static images, we introduce a modification of
max-pooling to strengthen our activity classifiers’ resilience
to temporal variations, modifying the initial classification
equation as follows:

(3)

arg max
a ∈A

1

|Ta|
∑
t∈Ta

max
t̂∈[t− p

2 ,t+
p
2 ]

(
(

|O|∑
i=0

wt̂a,i)
−1

·
|O|∑
i=0

wt̂a,i ·
(

lnL(x[t, FOi
]|Ot̂a,i)

))
By introducing the max operator over a temporal window

parameterized by p, each segment t of the input trajectory
x is scored according to the best-fitting segment model in
the p-neighborhood of t. This operator forgives a limited
but configurable amount of temporal misalignment while
still allowing for an implicit approach to pose modeling
accomplished by the time-segmented ensemble architecture.
With this modification, RAPTOR provides two mechanisms
to robustly guard against misclassification as a result of
temporal disparities between training and test data: temporal



segment (width and stride) and max-pooling (width) param-
eters that can be specified for each activity.

As a preliminary step for handling partial trajectories,
RAPTOR segments all input trajectories shorter than the
mean training trajectory length as if they were the mean
length, in order to avoid improper temporal segmentation.
While this may result in temporal segments receiving no
data to evaluate, classification accuracy is not affected as
it is accounted for in the calculation of |Ta| in Equations 1
and 3.

E. Activity Classification

Classification is performed by solving for a in Equation
3, following the pipeline depicted in Figure 1. The provided
input trajectory is passed into each activity classifier in order
to compute its likelihood under the prior imposed by each
particular model. Within each classifier, the input trajectory
is partitioned into windows fitting the width and position of
each temporal segment. The input signal is further partitioned
by object within each temporal segment for each positively
weighted object GMM (~wta in Equations 1 and 3). The entire
timespan within the temporal segment is evaluated within
each object model, outputting the mean log likelihood across
the input frames (L in Equations 1 and 3).

F. Anomaly Detection and Explanation

RAPTOR’s object-oriented ensemble approach can be
leveraged to provide interpretable explanations for anomalies
in input trajectories, as recognized from the perspective of
each activity model. Here, we introduce one such method
that incorporates outlier detection within and across temporal
segments in order to identify portions of input trajectories
that fit learned activity models particularly well (or poorly).

In human-robot collaborative scenarios, it is important to
synchronize expectations amongst teammates and to be able
to understand discrepancies between those expectations and
reality. Consider a support robot designed to take items from
human workers and carry them across a factory floor in
order to reduce the workers’ physical stress: if this support
robot has difficulty distinguishing between when a human is
carrying something versus walking unencumbered, it could
be considered unreliable and would likely be removed from
the workflow. It would be far easier to diagnose, understand,
and debug misclassifications between ‘carry’ and ‘walk’
behaviors if the human could ask the robot to explain why
it misclassified one as the other (e.g., ‘carry’ as ‘walk’) and
receive a response from the ‘carry’ model akin to “In the
middle and end of the trajectory, the left hand and right
hand features were very poorly matched to my template for
‘carry.”’

Template-based approaches have been shown to be ef-
fective within similar human-robot interaction settings [28].
By identifying outliers using Algorithm 1, we can employ
a template-based approach to summarize the results in an
interpretable manner that is similar to the above example. To
abstract the granularity of the summaries from the individual
activity model parameters, we introduce a separate level of

Algorithm 1: Find Temporal and Feature-based Outliers
Input: Activity classifier a, Temporal segments list Ta,

Object list O, outlier threshold α, Input
trajectory x

Output: Lists of temporal segment and
segment-indexed object outliers by likelihood

1 ~l← |O|×1-sized vector of weighted object likelihood
scores of x averaged across all temporal segments from
a;

2 trajm ← mean(~l), trajσ ← stdev(~l);
3 ~tsmeans ← |Ta|×1-sized vector of weighted object

likelihoods of x averaged within each temporal segment
of a;

4 ~tsoutliers ← {ts ∈ ~tsmeans | ‖ts−trajm‖1≥ α·trajσ};
5 ~objscores ← [|Ta|×|O|] matrix of object likelihood

scores of x at every temporal segment;
6 ~objoutliers ← {};
7 foreach t ∈ Ta do
8 tm ← mean( ~objscores[t, :]);
9 tσ ← stdev( ~objscores[t, :]);

10 ~objoutliers[t]← {o ∈
O | ‖ ~objscores[t, idx(o)]− tm‖1≥ α · tσ};

11 return ~tsoutliers , ~objoutliers;

trajectory division for the summarization step, allowing for
intuitively labeled divisions (such as [‘beginning’, ‘middle’,
‘end’] or [‘first half’, ‘second half’]) rather than temporal
segment 3. We additionally define labels to communicate
within-division coverage, allowing for responses conveying
information about the specificity of the explanation, such as
[‘some’, ‘most’] corresponding to explanations that cover up
to 50% and over 50% of the time division being described,
respectively. This allows the classifier to express more spe-
cific information, such as “In some of the first half of the
trajectory, the head features were exceptionally well matched
to my model compared with the others.”

To describe temporal segment outliers, we use the sum-
mary template, “In general the features I was tracking
for {coverage} of the {division} were very [well matched
/ unfamiliar according] to my model for {activity}.” For
summarizing object outliers within time segments, we use
the summary template “In the {division} of the action, the
{object list} features were [extremely well matched to my
model / did not match my model at all] for {activity}.”

This feature is helpful in two important use cases within
human-robot interaction: 1) providing insights into a robot
collaborator’s activity models for improved mutual under-
standing and expectation setting; and 2) in active learning
scenarios, assisting with the coaching of an interaction part-
ner to provide more helpful demonstrations for a learning
robot.



Fig. 2: Images from the UTKinect dataset (Left), Dynamic-AutoFA assembly task (Middle), and Static-Reach task (Right).

IV. EVALUATION AND RESULTS

We evaluate RAPTOR using three activity datasets: a
publicly available single person activity dataset with Kinect-
derived skeletal position features (UTKinect [11]); a motion-
capture dataset of reaching behaviors from a stationary man-
ufacturing task (Static-Reach [7]); and a new motion capture
dataset of a mobile automotive final assembly manufacturing
task (Dynamic-AutoFA) depicted in Figure 2.

The UTKinect dataset consists of 10 activity classes
performed twice each by 10 individuals: pull, push, walk,
carry, wave hands, clap hands, stand up, sit down, and
throw. Each activity contains a time-series of 60 features,
corresponding to the X,Y,Z coordinates of 20 skeletal joints
as estimated from RGB+D video data. Classifications within
UTKinect are made more challenging by the presence of
occlusions, varying demonstration lengths, and substantial
variation between subjects during each activity.

The Static-Reach dataset consists of 16 action classes
recorded during a collaborative manufacturing task per-
formed by a human-robot team: forward reaches to place
bolts in eight different locations, and their eight correspond-
ing arm-retraction motions. Each data frame consists of three
features marking the human’s hand position as captured by
a PhaseSpace motion capture system. In this dataset, 20
participants performed each action twice over the course
of completing two separate, full task executions. As the
robot partner utilized different motion planning strategies
during each task execution, there was variation between the
instances of reaching behaviors due to the human accommo-
dating (avoiding) the robot’s motion.

The Dynamic-AutoFA dataset consists of between 15
and 45 instances each of 11 action classes comprising an
automotive final assembly task: ‘Scan Dashboard,’ ‘Move
to Dashboard,’ ‘Move to Parts Table,’ ‘Scan Speedometer,’
‘Get Speedometer,’ ‘Install Speedometer,’ ‘Get Nav Unit,’
‘Scan Nav Unit,’ ‘Install Nav Unit,’ ‘Get Scanner,’ and
‘Place Scanner.’ Activity segments consist of 21 features
mapping to the X,Y,Z coordinates of the position of the
human worker’s head, left hand, and right hand, as well as
the positions of the parts table, navigation unit, speedometer,
and dashboard, as captured by a VICON motion capture
system. Classifications within Dynamic-AutoFA are made
more challenging through sensor occlusion and noise, as well
as substantially overlapping activity classes (such as ‘Get
Nav Unit’ and ‘Scan Nav Unit’, which were often performed
concurrently).

To evaluate RAPTOR using the UTKinect and Static-
Reach datasets, we performed 10-fold cross-validation across
subjects, training the RAPTOR activity models on demon-

Real-time UTKinect Activity Recognition Accuracy
Classifier Accuracy
Slama et al. (2015) [21] 88.5%
Chrungoo et al. (2014) [18] 89.45%
Xia et al. (2012) [11] 90.9%
Wang et al. (2015) [23] 90.9%
Devanne et al. (2013) [20] 91.5%
RAPTOR (proposed method) 92.1%

TABLE I: Top-1 activity classification accuracies during
cross-subject evaluation for the UTKinect dataset for recog-
nition methods self-identified as ‘real-time’.

strations from all subjects but one and testing against all
demonstrations from the held-out actor. For the Dynamic-
AutoFA dataset, we performed 10-fold cross-validation
within activities by training on 90% of the available demon-
strations for each activity and testing on the remaining 10%.
We fixed the temporal segment parameters at 12.5% width
and 6.25% stride for each activity, yielding 15 temporal seg-
ments per activity model. The max-pooling width parameter
(p in Equation 3) was fixed at 4. Our results indicate that
RAPTOR achieved real-time performance and state-of-the-
art accuracy both for activity recognition (classifying full
trajectories) and activity prediction (identifying actions mid-
execution, given a partial trajectory) without any preprocess-
ing of the input data (e.g., smoothing, alignment, or filtering).

A. Activity Recognition and Prediction

Real-time activity recognition is critical for task planning
for collaborative, multi-agent scenarios. In Table I we report
best-in-class performance by RAPTOR compared with real-
time methods found in the literature. We report recognition
accuracy across all three datasets for both Top-1 and Top-2
classification thresholds (where the top two predictions for
each trajectory are considered) in Table II.

Our method demonstrates extremely high-level perfor-
mance on the manufacturing task datasets while achieving
the highest accuracy for real-time activity recognition on
UTKinect. We include Top-2 accuracy results as many se-
quential tasks incorporate task priors that can be used to
bias the final activity likelihoods generated as output by our
approach. As a representative example, proper task proce-
dure for the automotive final assembly task captured in the
Dynamic-AutoFA dataset dictates that the installation of the
speedometer must occur before installation of the navigation
unit due to the component wiring layout. Accordingly, a
task-level prior would strongly penalize the likelihood of
the ‘Install Nav Unit’ activity occurring before the ‘Install
Speedometer’ activity was completed.



RAPTOR Activity Recognition Accuracy
Dataset Top-1 Accuracy Top-2 Accuracy
UTKinect 92.1% 99.4%
Static-Reach 97.5% 99.4%
Dynamic-AutoFA 92.0% 100.0%

TABLE II: Classification accuracy scores for RAPTOR
across a general activity dataset (UTKinect) and two domain-
specific manufacturing task datasets. The leading real-time
human reaching predictor [24] achieves 91.9% Top-1 and
97.8% Top-2 accuracy on Static-Reach.

RAPTOR Online Activity Prediction Accuracy
Dataset 25% 50% 75% 100%
UTKinect 79.4% 83.1% 84.7% 92.1%
Static-Reach 69.7% 77.2% 93.8% 97.5%
Dynamic-AutoFA 91.7% 88.1% 90.5% 92.0%

TABLE III: Top-1 classification accuracy scores for varying
partial trajectory lengths on each of the three datasets.

B. Online Activity Prediction

RAPTOR also performs well with partial trajectory clas-
sification, capable of real-time prediction at a frequency
comparable to the sensor capture rate (30Hz) using an
unoptimized Python implementation on commodity hardware
(Intel i7-2600K CPU). While the computation time of each
activity model’s likelihood scores for a given trajectory will
change as a function of trajectory length (frame count) and
the model’s parameters (temporal segment width, temporal
segment stride, and max-pooling width), our experiments
resulted in a mean classification time (on full-length tra-
jectories) per model of 36.7ms on UTKinect, 38.5ms on
Static-Reach, and 38.8ms on Dynamic-AutoFA. These times
could be further reduced by parallelizing the computation of
temporal segment likelihood scores for each activity model.

Table III depicts Top-1 partial trajectory classification
accuracy for all three datasets, including results from when
our classifier is given 25%, 50%, 75%, and 100% of each
test trajectory. At 25%, the activity classifier is often using
less than 500ms of motion data per activity; as such, we
observed classification errors across activities with similar
initial movements. In the Dynamic-AutoFA dataset, ‘Scan
Dashboard’ and ‘Move to Dashboard’ were often confused
as they tended to have partially overlapping annotations
in the training set. Likewise, ‘Install Nav Unit’ and ‘Get
Scanner’ were often confused as both actions tended to
require reaching towards the same location (workers often
placed the Scanner tool on top of the dashboard assembly
when not using it). Within the UTKinect dataset, we observed
confusion amongst ‘pull’ and ‘throw,’ as well as between
‘pickup’ and ‘sit down,’ at 25% of the partial trajectory due
to initial motion similarities.

C. Anomaly Detection and Explanation

In order to evaluate the interpretable aspect of our classi-
fier, we demonstrate its ability to use anomaly explanation to

Fig. 3: Confusion Matrix for UTKinect dataset recognition
(100% trajectory) results with time segment width 12.5%,
stride 6.25% and max-pooling parameter p = 4. The con-
fusion between ‘push’ and ‘throw’ suggests the max-pool
parameter could be reduced for the ‘push’ activity model.

clarify classification errors that would otherwise be difficult
to diagnose. Given the confusion matrix from our UTKinect
activity recognition evaluation (Figure 3), it may be useful
to understand why ‘push’ was misclassified as ‘throw’ or
why ‘carry’ was occasionally misclassified as ‘walk.’ Here,
using the approach described in Section III-F, we detail
how to generate an explanation to understand and debug
these misclassifications, with the observed ‘carry’/‘walk’
confusion serving as a representative example.

For our experiments, we defined three trajectory divi-
sions: ‘beginning,’ ‘middle,’ and ‘end,’ corresponding to
the first 33%, middle 34%, and final 33% of the in-
put trajectory, respectively. To summarize the frequency
with which an object occurs as an outlier within these
divisions, we defined four coverage categories: ‘a bit,’
‘some,’ ‘most,’ and ‘all’ – corresponding to the inter-
vals [0, 25%), [25%, 50%], (50%, 100%), and [100%], re-
spectively. We set α = 2.0 in Algorithm 1.

When queried with a misclassified instance of ‘carry’
from the UTKinect dataset, the RAPTOR activity model of
‘carry’ provided the following explanation: “In the beginning
of the action, right hand and right wrist features did not
match my model for ‘carry’ at all. In the middle of the
action, right hand, right wrist, and left wrist features did
not match my model for ‘carry’ at all. In the end of the
action, left hand and right hand features did not match my
model for ‘carry’ at all.” With this information, it is clear
that either the hand model for ‘carry’ is too restrictive or this
particular example has a unique motion hand pattern (≥ 2σ
likelihood deviation) that has not been previously observed.
This identifies the features attributable to the classification
error, allowing targeted training examples to be provided in
order to repair the model.

When applied to properly classified trajectories, our ap-
proach can identify areas of weakness or strength in the



activity model even if they were not enough to generate
classification errors. Within the Dynamic-AutoFA dataset,
a poorly executed ‘Place Scanner’ activity that was still
classified correctly output the explanation: “In general, the
objects I was tracking for some of the middle of the action
were especially unfamiliar according to my model for ‘Place
Scanner.”’ In this case, the scanner tool was dropped and
the overall likelihood of the temporal segment during the
recovery of the tool was substantially lower than other
segments for that trajectory, illustrating a successful anomaly
detection and summarization.

V. CONCLUSION

We have presented Rapid Activity Prediction Through
Object-oriented Regression (RAPTOR), a highly parallel
activity classifier capable of performing real-time activ-
ity recognition given only partial trajectories, capable of
achieving state-of-the-art accuracy on three diverse activity
datasets, even in the absence of data preprocessing and
hyperparameter tuning. We described and demonstrated our
approach’s ability to perform anomaly detection and expla-
nation, autonomously providing interpretable summaries to
improve collaborators’ understanding of the learned activity
models. Our contribution, targeted toward improving human-
robot collaboration, improves upon prior work in terms
of overall classification accuracy, online performance, and
interpretability.
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