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ABSTRACT 

Natural Language Understanding (NLU) was one of the main 

original goals of artificial intelligence and cognitive science. This 

has proven to be extremely challenging and was nearly abandoned 

for decades. We describe an implemented system that supports 

full NLU for tasks of moderate complexity. The natural language 

interface is based on Embodied Construction Grammar and 

simulation semantics. The system described here supports human 

dialog with an agent controlling a simulated robot, but is flexible 

with respect to both input language and output task.   

Categories and Subject Descriptors 

H.5.2 [Information Interfaces and Presentation]: User 

Interfaces – Natural language. 

I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 

Natural language interfaces. 

I.2.7 [Artificial Intelligence]: Natural Language Processing – 

discourse, language parsing and understanding. 

General Terms 

Experimentation, Human Factors, Languages. 

Keywords 

Natural language understanding (NLU), robotics simulation, 

referent resolution, clarification dialog. 

1. NATURAL LANGUAGE INTERFACES 
Natural language interfaces have long been a topic of HRI 

research. Winograd’s 1971 SHRDLU was a landmark program 

that allowed a user to command a simulated arm and to ask about 

the state of the block world (Winograd, 1971). There is currently 

intense interest in both the promise and potential dangers of much 

more capable robots.  

Table 1. NLU beyond the 1980’s 

1) Much more computation 

2) NLP technology 

3) Construction Grammar: form-meaning pairs 

4) Cognitive Linguistics: Conceptual primitives, ECG 

5) Constrained Best Fit: Analysis, Simulation, Learning 

6) Under-specification: Meaning involves context, goals. .. 

7) Simulation Semantics; Meaning as action/simulation 

8) CPRM= Coordinated Probabilistic Relational Models; 

Petri Nets ++ 

9) Domain Semantics; Need rich semantics of Action  

10) General NLU front end: Modest effort to link to a new 

Action side 

 

As shown in Table 1, we believe that there have been sufficient 

scientific and technical advances to now make NLU of moderate 

scale an achievable goal. The first two points are obvious and 

general. All of the others except for point 8 are discussed in this 

paper. The CPRM mechanisms were not needed in the current 

system, but are essential for more complex actions and simulation 

(Barrett 2010). In this paper, simulation is action in a robot model; 

more general simulations using our framework are discussed in 

Feldman(2014) and Narayanan(1999).  

 

2. EMBODIED CONSTRUCTION 

GRAMMAR 
This work is based on the Embodied Construction Grammar 

(ECG), and builds on decades of work on the Neural Theory of 

Language (NTL) project. The meaning side of an ECG 

construction is a schema based on embodied cognitive linguistics. 

(Feldman, Dodge, and Bryant 2009).  

ECG is designed to support the following functions:  

1) A formalism for capturing the shared grammar and beliefs 

of a language community. 

2) A precise notation for technical linguistic work 

3) An implemented specification for grammar testing 

4) A front end for applications involving deep semantics 

5) A high level description for neural and behavioral 

experiments.  

6) A basis for theories and models of language learning. 

 

In this work, we focus on point 4; we are using ECG for the 

natural language interface to a robot simulator. We suggest that 

NLU can now be the foundation for HRI with the current 

generation of robots of limited complexity. Any foreseeable robot 

will have limited capabilities and will not be able to make use of 

language that lies outside its competence. While full human-

human level NLU is not feasible, we show that current NLU 

technology supports HRI that is adequate for practical purposes. 

3. SYSTEM ARCHITECTURE 
As shown in the system diagram, Figure 1, the system is designed 

to be modular; a crucial part of the design is that the ECG 

grammar is designed to work for a wide range of applications that 

have rich internal semantics. ECG has previously been 

demonstrated as a computational module for applied language 

tasks’ for understanding solitaire card game instructions (Oliva el 

al. 2012).  

 

 

 

 



 

 

Figure 1: The system diagram.  

 

 

The main modules are the analyzer, the specializer, the problem 

solver, and the robot simulator. The analyzer semantically parses 

the user input with an ECG grammar plus ontology and outputs a 

data structure called the SemSpec. 

 

The specializer crawls the SemSpec to capture the task relevant 

information, which it sends to the problem solver as a data 

structure called an n-tuple. The problem solver then uses the 

information from the n-tuple, along with the problem solver’s 

internal model of the world, to make decisions about the world 

and carry out actions. Additionally, the problem solver updates its 

model of the world after each action, so it can continue to make 

informed decisions and actions.  

 

While this paper focuses on English, the system also works in 

Spanish. The same analyzer, N-tuples, problem solver, and 

simulator can be used without alteration. Spanish and English 

have major grammatical differences; therefore, they use different 

constructions, so a modified specializer is needed. The specializer 

extracts the relevant information and creates the same n-tuple. 

This allows the problem solver and robot simulator to remain 

unchanged.   

 

In addition to the application to robotics, a similar architecture is 

also used for metaphor analysis. For this domain, more 

constructions must be added to the grammar, but the same 

analyzer can be used. Instead of carrying out commands in a 

simulated world, metaphors and other information from the 

SemSpec are stored in a data structure, which can be queried for 

frequency statistics, metaphor entailments, and inferences about a 

speaker’s political beliefs. 

Figure 2: The Simulated World. 

 

3.1 Supported Input  
Table 2 highlights a representative sample of working input, 

corresponding to the scene in Figure 2. There is an obvious focus 

on motion, due to the functionality of the robot used. The location 

to which the robot is instructed to move can include specific 

locations “location 1 2,” and specific items “Box1.” The system 

can also handle more complicated descriptions, using color and 

size. Additionally, when the user references an indefinite object, 

such as, “a red box,” and there are multiple objects that fit the 

description, one of the objects that satisfies the condition is 

chosen randomly. For definite descriptions, such as “the red box”, 

the system requests clarification, asking: “which red box?” 

Table 2: Sample supported input (English) 

1) Robot1, move to location 1 2! 

2) Robot1, move to the north side of the blue box! 

3) Robot1, push the blue box East! 

4) Robot1, move to the green box then push the blue box South! 

5) Robot1, if the small box is red, push it North! 

6) where is the green box? 

7) is the small red box near the blue box? 

8) Robot1, move behind the big red box! 

9) which boxes are near the green box? 

 

Table 3: Sample supported input (Spanish) 

1) Robot1, muévete a posición 1 2! 

2) Robot1, muévete al parte norte de la caja azul! 

3) Robot1, empuje la caja azul al este! 

4) Robot1, muévete a la caja verde y empuje la caja azul al sur! 

5) Robot1, si la caja pequeña es roja, la empuje al norte! 

6) dónde está la caja verde? 

7) está la caja roja y pequeña cerca de la caja azul? 

8) Robot1, muévete detrás de la caja roja y grande! 

9) cuáles cajas están cerca de la caja verde? 

 

In addition to commands involving moving and pushing, the 

system can also handle yes or no questions—as demonstrated in 

Example 7 in Table 2. Example 5 demonstrates a conditional 

imperative; the robot will only perform the instruction if the 

condition is satisfied. The system can also handle basic referent 

resolution, as demonstrated in Example 5. This is done by 

choosing the most recent antecedent that is both syntactically and 

semantically compatible. This method is described in (Oliva et al, 

2012) and is based on the way humans select antecedents.  

 

The total range of supported input is considerably greater than the 

sentences included in the tables; this sample is intended to give a 

sense of the general type or structure of supported input in both 

English and Spanish. 

 

If the analyzer cannot analyze the input, the user is notified and 

prompted to try typing the input again. If the user attempts to 

describe an object that does not exist in the simulation, such as 

“the small green box”, the system informs the user, “Sorry, I don’t 

know what ‘small green box’ is.” 

 

Blue 

Green 

Red 

Red 



If there is more than one object that matches an object’s 

description (e.g. “red box”), and a definite article is used (e.g. “the 

red box”), the system asks for clarification, such as: “which red 

box?” The user can then offer a more specific description, such as: 

“the small one.”  

4. Extended Example: Robot Simulation 
In order to demonstrate the integration and functionality of the 

system, we will trace an extended example from text to action. 

We will consider the command, “Robot1, if the box near the green 

box is red, push it South!” First, notice that this sentence involves 

a number of complex linguistic constructions including 

conditionals, definite descriptions, pronoun resolution, etc. Any 

simple analysis would incorrectly match “it” with the green box. 

This example is discussed in the context of the example situation 

in Figure 2, the system diagram of Figure 1, and the 

supplementary video: 

https://docs.google.com/file/d/0B6rDSJGnf4t6SlhyeG9NcEpZdT

Q/edit?pli=1  

4.1 Analyzer 
The input text is first parsed by the analyzer program using the 

ECG grammar. The analyzer uses syntactic and semantic 

properties to develop a best-fit model and produce a SemSpec. 

This SemSpec is a grammatical analysis of the sentence, 

consisting of conceptual schemas and their bindings (Bryant 

2008). A constructional outline of the SemSpec for this example 

can be found in Appendix A. 

4.2 Specializer 
The specializer extracts the relevant information for the problem 

solver from the SemSpec. This output is in the form of an n-tuple, 

a data structure implemented using Python dictionaries. The n-

tuple for this example can be found in Appendix B. Our Python-

based n-tuple templates are a form of Agent Communication 

Language; although the content of the n-tuples changes across 

different tasks and domains (such as robotics and metaphor 

analysis), the structure and form can remain the same. When new 

applications are added, new n-tuple templates are defined to 

facilitate communication with the problem solver. The n-tuples 

are not limited to a Python implementation. 

 

In this case, the command is in the form of a conditional, so the 

specializer must fill in the corresponding template by extracting 

the bindings from the SemSpec.  

 

Additionally, the direct object of the “push” command is a 

pronoun; the analyzer cannot match pronouns with their 

antecedents, so the specializer uses a combination of syntactic and 

semantic information to perform reference resolution (Oliva et al, 

2012). In this case, the antecedent of “it” is “the box near the 

green box”, so the specializer passes this information to the 

problem solver in the n-tuple. 

4.3 Problem Solver 
The problem solver parses the n-tuple to determine the actions 

needed, and then performs those actions in context. Language 

almost always under-specifies meaning, so context plays a large 

role in the Problem Solver. The core app, such as our MORSE 

robot simulator, cannot be expected to maintain and exploit 

context. The solver begins by determining the type of command, 

which is here a conditional. Before it performs the command, it 

must evaluate the truth of the condition.  

 

In this example, the problem solver must determine which box is 

“near the green box” and then determine whether that box has the 

property red. Using the information provided by the specializer, 

the solver searches through its data structure, which contains the 

current and updated state of the simulated world. Once the solver 

identifies the box that is located near the green box, it can 

evaluate whether that box is red using its vision system or world 

knowledge. 

 

If the condition is satisfied, the robot performs the specified 

action: in this case, “push it [the box near the green box] South!” 

This action is considerably more complex than simply moving to 

a box, and involves a nontrivial amount of trajectory planning. 

First, the solver disambiguates the location of the box by 

searching through its data structures. Then, it determines that to 

push the box South, it must move to the North side of the box 

(avoiding obstacles along the way), rotate to face the box, and 

move South. This results in pushing the box South. The planning 

functionality is encapsulated and could be replaced by one of the 

elaborate trajectory planners in the literature. 

 

Finally, the call to execute a move action is made through the 

wrapper class of the robot or simulator API, here MORSE. This 

additional level of abstraction allows the system to work with an 

arbitrary robot or simulator, assuming it supports the same 

primitives. 

4.4 Simulator 
The demo system is built on top of MORSE (Echeverria et al, 

2011), which in turn relies on Blender for 3d visualization. 

MORSE is an open-source simulator designed for academic 

robotics. While our system is designed to work on an arbitrary 

simulator, it has been influenced by the specifications of this one. 

MORSE provides some useful functionality, including realistic 

physics and a variety of interfaces (including the Python bindings 

we use). It also has some key limitations, such as restricted 

functionality and the lack of path planning. The use of Blender 

allows for realistic physics simulations, and easy modeling. 

4.5 Alternate Platforms 
While we demo our system with the MORSE simulator, we are 

also considering physical robot platforms. A leading option is the 

QRIO robot, which was developed by Sony. We are working on 

incorporating QRIO in conjunction with a research partner and are 

exploring other possibilities. 

 

4.6 Additional System Features 
The system also incorporates several other key features that aid 

both its semantic understanding and its functionality. First, as 

mentioned above, the specializer performs basic referent 

resolution between pronouns and their antecedents. This is done 

by maintaining a LIFO stack of the syntactic heads of past 

Nominal Phrases; when a pronoun is encountered, the specializer 

matches its syntactic and semantic context with the most recent 

compatible object reference on the stack. This procedure is 

somewhat novel because it incorporates semantic features, as well 

as syntactic ones, in determining the compatibility of a pronoun 

and its antecedent. For example, if the robot is instructed to 

“push” something, the specializer checks that the antecedent is 

“movable”, using the ontology lattice. 

 

Second, the specializer resolves cases of the “anaphoric one” 

using a related but distinct method. The usage of the anaphoric 

one is problematic because it often refers simply to an 

https://docs.google.com/file/d/0B6rDSJGnf4t6SlhyeG9NcEpZdTQ/edit?pli=1
https://docs.google.com/file/d/0B6rDSJGnf4t6SlhyeG9NcEpZdTQ/edit?pli=1


antecedent’s category. For example, in the sentence “John has a 

red cup and I have a green one”, one refers to the category of 

“cup”. Research suggests that discourse and semantic context are 

necessary for proper resolution (Salmon-Alt et al, 2001). Our 

system has semantic and world knowledge, and it uses these 

contextual features in the resolution process; qualifiers in the 

antecedent, such as “red”, are compared with the anaphor’s 

qualifiers (“green”), and are added iteratively until the system is 

able to locate a referent in the simulated world. 

 

Finally, the system handles under-specified input via appropriate 

clarification dialogs. The problem solver has information about 

the simulated world, so it can determine when to query the user 

for more information. If the user instructs the robot to move to 

“the red box”, and there are two red boxes, the system asks: 

“which red box?” The user might reply: “the small one”. This 

clarification process allows the system to interact with the user, 

and continues until the input is properly specified. It then uses 

one-anaphora resolution to determine the correct referent. 

. 

5. RELATION TO PRIOR WORK 
In addition to the early work on SHRDLU, there has also been 

some recent work on using natural language to control robots. In 

contrast to Winograd’s work— as well as our own— these 

approaches focus on learning from examples (Howard et al. 

2014). 

 

Both our work and Winograd’s focus on a specific domain 

(Winograd, 1971). SHRDLU knew the properties of blocks, and 

understood how to interact with them specifically. While our 

Analyzer is general, our Problem Solver (Figure 1)  is specific to 

each application.  

 

SHRDLU analyzed the sentence in terms of the definitions of the 

individual words. It was not designed to be adapted to different 

tasks. In contrast, our modular system allows for portions to be 

used for different tasks (such as metaphor analysis). For 

SHRDLU, language understanding was highly coupled with the 

simulated world, and the world was re-simulated based on the 

language. In order to model a more realistic interaction with 

robots, our problem solver issues commands to a robot simulator 

API, which could be replaced with a robot API.  

 

Recent work has also approached the problem of providing a 

natural language interface for robots. Matuszek et al. learned a 

parser based on pairs of English commands and control language 

expressions In contrast, our work builds upon the Embodied 

Construction Grammar(ECG), which we believe allows us to 

better understand the intentions of the human, because embodied 

semantics directly models intentional aspects of language. ECG 

constructions can also capture indirect speech acts like: “I want 

the red boxed moved North”. 

   

Other work has focused on robots asking humans for help when 

stuck (Tellex et al.). We implement a basic request for 

clarification, since scope of our work is to perform commands 

issued by the user. However, in an environment where the robot 

has more autonomy, the need to ask with assistance on a task— 

and not just ask for clarification about a command—can be 

crucial. All of this requires a much richer NLU system, like ECG. 

6. CONCLUSION  
This paper demonstrates a fully integrated yet modular system 

that provides a natural language interface, based on embodied 

semantics, to a robotic simulator. In combination with (Oliva et al, 

2012) this demonstrates that the ECG and Analyzer architecture 

of Figure 2 can be used for diverse applications: solitaire, robotic 

control, and metaphor analysis. The Spanish version further 

illustrates the flexibility of the system. The use of the ECG allows 

for a deep semantic understanding, which supports full treatment 

of different input languages, as well as providing solid framework 

for analyzing embodied concepts, such as motion and spatial 

relations. The main goal of this work is not just in the domain of 

robotics, but rather a general NLU front end for autonomous 

systems. 

6.1 Limitations 
The primary limitation of the current system is scale. We have 

implemented and tested English grammars much richer than 

shown here, but well short of complete coverage (Feldman, 

Dodge, and Bryant 2009). This is a focus of current research. In 

order to facilitate more natural interactions, we have also begun 

the integration of a spoken language recognizer. But our restricted 

domains should support much more robust recognition.  

6.2 Ongoing Work 
This project is still in active development. In the domain of 

robotics, we have begun to study more complex (possibly 

humanoid) robots operating in complex real-world situations. We 

are also exploring totally different NLU tasks including the 

interpretation of metaphorical language. 

 

On the system level, scaling remains the core issue. The 

constructional structure of a language (e.g., English) is complex 

but bounded. We believe that enough is now understood to 

support realization of the fixed compositional subset of a 

language.  

We have also implemented a morphological pre-processing 

system that reduces the number of necessary constructions and 

exploits the existing schema lattices in the grammar. Additionally, 

we have reduced the need for lexical constructions by developing 

a new method of expanding the lexicon, which involves inserting 

“tokens” of various syntactic and semantic categories into a token 

list (e.g., “red” is a token of the “color” type). The tokens do not 

need to be read in when the grammar is compiled. This allows us 

to significantly increase the size of the lexicon, while maintaining 

the complex semantics of the grammar.  

 

For full coverage, the lexicon and idiomatic usage of each domain 

will need to be captured, almost certainly through incremental 

machine learning. Syntactic and semantic usage frequencies can 

be exploited as well. We could also benefit from the lessons 

learned in dialog systems (McTear 2002). 
 
For coupling the general NLU front end to varying application 

domains, some additional system work should be done. As with 

any system coupling, the ontology referenced by Analyzer needs 

to be shared with that of the Problem Solver in order to give both 

modules the relevant information about the terms used. We are 

hopeful that RDF/OWL will be helpful here, but have not tried 

this yet. 

 

Obviously enough, we should test our ideas in more realistic (or 

real) environments, including those with multiple agents. We are 



exploring several possible applications and welcome ideas and 

collaboration on this. 
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Appendix A: SemSpec example 

 
Below is the Analyzer’s SemSpec output for the sentence: “Robot1, if the box near the green box is red, push it South!” In 

order to conserve space and also illustrate the entire constructional tree, many of the constructional roles and schemas have 

been collapsed. Small boxes with the same number denote items that are co-indexed (bound). 

 

 
 

 

 

 

 

 

 

  



Appendix B: n-tuple example 
“Robot1, if the box near the green box is red, push it South!” 

Below is a representation of the N-Tuple; the actual Python code is shown in the supplementary materials. This particular n-

tuple contains multiple nested n-tuples (a condition and a command), because a conditional command is relatively complex. 

Return_type: error_descriptor, 

Predicate_type: conditional 

Parameters: 

 Kind: Conditional 

 Condition: 

  Protagonist: Object-Descriptor: 

   Type: box 

   Givenness: uniquely-Identifiable 

   Location-Descriptor:  

Relation: Near 

    Object-Descriptor:  

     Type: box 

     Givenness: Uniquely-Identifiable 

     Color: green 

  Predication: (Color: Red) 

  Kind: Query 

  Action: be 

 Command: 

  Kind: cause 

  Causal-Process: 

   Protagonist: Robot1_instance 

   Control_State: Ongoing 

   Speed: 0.5 

   Distance: (units: square, value: 8) 

   Acted-Upon: Object-Descriptor: 

    Type: Box 

    Givenness: Uniquely-Identifiable 

    Location-Descriptor:  

Relation: Near 

     Object-Descriptor:  

      Type: box 

      Givenness: Uniquely-Identifiable 

      Color: green 

   Kind: Execute 

   Action: Force-Application 

  Affected-Process: 

   Direction: None 

   Protagonist: Object-Descriptor 

Type: Box 

    Givenness: Uniquely-Identifiable 

    Location-Descriptor:  

Relation: Near 

     Object-Descriptor:  

      Type: box 

      Givenness: Uniquely-Identifiable 

      Color: green 

   Heading: South 

   Control_state: Ongoing 

   Speed: 0.5 

   Distance: (units: square, value: 8) 

   Kind: Execute 

 Causer: Robot1_instance 

 Action: push_move 
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