
Natural Language For Human Robot Interaction
Huda Khayrallah

UC Berkeley Computer Science
Division

University of California, Berkeley
Berkeley, CA 94704
+1 (510) 642-6000

huda@icsi.berkeley.edu

Sean Trott
International Computer Science

Institute
1947 Center Street #600

Berkeley, CA 94704
+1 (510) 666-2900

seantrott@icsi.berkeley.edu

Jerome Feldman
International Computer Science

Institute
1947 Center Street #600

Berkeley, CA 94704
+1 (510) 666-2900

feldman@icsi.berkeley.edu

ABSTRACT

Natural Language Understanding (NLU) was one of the main

original goals of artificial intelligence and cognitive science. This

has proven to be extremely challenging and was nearly abandoned

for decades. We describe an implemented system that supports

full NLU for tasks of moderate complexity. The natural language

interface is based on Embodied Construction Grammar and

simulation semantics. The system described here supports human

dialog with an agent controlling a simulated robot, but is flexible

with respect to both input language and output task.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User

Interfaces – Natural language.

I.2.1 [Artificial Intelligence]: Applications and Expert Systems –

Natural language interfaces.

I.2.7 [Artificial Intelligence]: Natural Language Processing –

discourse, language parsing and understanding.

General Terms

Experimentation, Human Factors, Languages.

Keywords

Natural language understanding (NLU), robotics simulation,

referent resolution, clarification dialog.

1. NATURAL LANGUAGE INTERFACES
Natural language interfaces have long been a topic of HRI

research. Winograd’s 1971 SHRDLU was a landmark program

that allowed a user to command a simulated arm and to ask about

the state of the block world (Winograd, 1971). There is currently

intense interest in both the promise and potential dangers of much

more capable robots.

Table 1. NLU beyond the 1980’s

1) Much more computation

2) NLP technology

3) Construction Grammar: form-meaning pairs

4) Cognitive Linguistics: Conceptual primitives, ECG

5) Constrained Best Fit: Analysis, Simulation, Learning

6) Under-specification: Meaning involves context, goals. ..

7) Simulation Semantics; Meaning as action/simulation

8) CPRM= Coordinated Probabilistic Relational Models;

Petri Nets ++

9) Domain Semantics; Need rich semantics of Action

10) General NLU front end: Modest effort to link to a new

Action side

As shown in Table 1, we believe that there have been sufficient

scientific and technical advances to now make NLU of moderate

scale an achievable goal. The first two points are obvious and

general. All of the others except for point 8 are discussed in this

paper. The CPRM mechanisms were not needed in the current

system, but are essential for more complex actions and simulation

(Barrett 2010). In this paper, simulation is action in a robot model;

more general simulations using our framework are discussed in

Feldman(2014) and Narayanan(1999).

2. EMBODIED CONSTRUCTION

GRAMMAR
This work is based on the Embodied Construction Grammar

(ECG), and builds on decades of work on the Neural Theory of

Language (NTL) project. The meaning side of an ECG

construction is a schema based on embodied cognitive linguistics.

(Feldman, Dodge, and Bryant 2009).

ECG is designed to support the following functions:

1) A formalism for capturing the shared grammar and beliefs

of a language community.

2) A precise notation for technical linguistic work

3) An implemented specification for grammar testing

4) A front end for applications involving deep semantics

5) A high level description for neural and behavioral

experiments.

6) A basis for theories and models of language learning.

In this work, we focus on point 4; we are using ECG for the

natural language interface to a robot simulator. We suggest that

NLU can now be the foundation for HRI with the current

generation of robots of limited complexity. Any foreseeable robot

will have limited capabilities and will not be able to make use of

language that lies outside its competence. While full human-

human level NLU is not feasible, we show that current NLU

technology supports HRI that is adequate for practical purposes.

3. SYSTEM ARCHITECTURE
As shown in the system diagram, Figure 1, the system is designed

to be modular; a crucial part of the design is that the ECG

grammar is designed to work for a wide range of applications that

have rich internal semantics. ECG has previously been

demonstrated as a computational module for applied language

tasks’ for understanding solitaire card game instructions (Oliva el

al. 2012).

Figure 1: The system diagram.

The main modules are the analyzer, the specializer, the problem

solver, and the robot simulator. The analyzer semantically parses

the user input with an ECG grammar plus ontology and outputs a

data structure called the SemSpec.

The specializer crawls the SemSpec to capture the task relevant

information, which it sends to the problem solver as a data

structure called an n-tuple. The problem solver then uses the

information from the n-tuple, along with the problem solver’s

internal model of the world, to make decisions about the world

and carry out actions. Additionally, the problem solver updates its

model of the world after each action, so it can continue to make

informed decisions and actions.

While this paper focuses on English, the system also works in

Spanish. The same analyzer, N-tuples, problem solver, and

simulator can be used without alteration. Spanish and English

have major grammatical differences; therefore, they use different

constructions, so a modified specializer is needed. The specializer

extracts the relevant information and creates the same n-tuple.

This allows the problem solver and robot simulator to remain

unchanged.

In addition to the application to robotics, a similar architecture is

also used for metaphor analysis. For this domain, more

constructions must be added to the grammar, but the same

analyzer can be used. Instead of carrying out commands in a

simulated world, metaphors and other information from the

SemSpec are stored in a data structure, which can be queried for

frequency statistics, metaphor entailments, and inferences about a

speaker’s political beliefs.

Figure 2: The Simulated World.

3.1 Supported Input
Table 2 highlights a representative sample of working input,

corresponding to the scene in Figure 2. There is an obvious focus

on motion, due to the functionality of the robot used. The location

to which the robot is instructed to move can include specific

locations “location 1 2,” and specific items “Box1.” The system

can also handle more complicated descriptions, using color and

size. Additionally, when the user references an indefinite object,

such as, “a red box,” and there are multiple objects that fit the

description, one of the objects that satisfies the condition is

chosen randomly. For definite descriptions, such as “the red box”,

the system requests clarification, asking: “which red box?”

Table 2: Sample supported input (English)

1) Robot1, move to location 1 2!

2) Robot1, move to the north side of the blue box!

3) Robot1, push the blue box East!

4) Robot1, move to the green box then push the blue box South!

5) Robot1, if the small box is red, push it North!

6) where is the green box?

7) is the small red box near the blue box?

8) Robot1, move behind the big red box!

9) which boxes are near the green box?

Table 3: Sample supported input (Spanish)

1) Robot1, muévete a posición 1 2!

2) Robot1, muévete al parte norte de la caja azul!

3) Robot1, empuje la caja azul al este!

4) Robot1, muévete a la caja verde y empuje la caja azul al sur!

5) Robot1, si la caja pequeña es roja, la empuje al norte!

6) dónde está la caja verde?

7) está la caja roja y pequeña cerca de la caja azul?

8) Robot1, muévete detrás de la caja roja y grande!

9) cuáles cajas están cerca de la caja verde?

In addition to commands involving moving and pushing, the

system can also handle yes or no questions—as demonstrated in

Example 7 in Table 2. Example 5 demonstrates a conditional

imperative; the robot will only perform the instruction if the

condition is satisfied. The system can also handle basic referent

resolution, as demonstrated in Example 5. This is done by

choosing the most recent antecedent that is both syntactically and

semantically compatible. This method is described in (Oliva et al,

2012) and is based on the way humans select antecedents.

The total range of supported input is considerably greater than the

sentences included in the tables; this sample is intended to give a

sense of the general type or structure of supported input in both

English and Spanish.

If the analyzer cannot analyze the input, the user is notified and

prompted to try typing the input again. If the user attempts to

describe an object that does not exist in the simulation, such as

“the small green box”, the system informs the user, “Sorry, I don’t

know what ‘small green box’ is.”

Blue

Green

Red

Red

If there is more than one object that matches an object’s

description (e.g. “red box”), and a definite article is used (e.g. “the

red box”), the system asks for clarification, such as: “which red

box?” The user can then offer a more specific description, such as:

“the small one.”

4. Extended Example: Robot Simulation
In order to demonstrate the integration and functionality of the

system, we will trace an extended example from text to action.

We will consider the command, “Robot1, if the box near the green

box is red, push it South!” First, notice that this sentence involves

a number of complex linguistic constructions including

conditionals, definite descriptions, pronoun resolution, etc. Any

simple analysis would incorrectly match “it” with the green box.

This example is discussed in the context of the example situation

in Figure 2, the system diagram of Figure 1, and the

supplementary video:

https://docs.google.com/file/d/0B6rDSJGnf4t6SlhyeG9NcEpZdT

Q/edit?pli=1

4.1 Analyzer
The input text is first parsed by the analyzer program using the

ECG grammar. The analyzer uses syntactic and semantic

properties to develop a best-fit model and produce a SemSpec.

This SemSpec is a grammatical analysis of the sentence,

consisting of conceptual schemas and their bindings (Bryant

2008). A constructional outline of the SemSpec for this example

can be found in Appendix A.

4.2 Specializer
The specializer extracts the relevant information for the problem

solver from the SemSpec. This output is in the form of an n-tuple,

a data structure implemented using Python dictionaries. The n-

tuple for this example can be found in Appendix B. Our Python-

based n-tuple templates are a form of Agent Communication

Language; although the content of the n-tuples changes across

different tasks and domains (such as robotics and metaphor

analysis), the structure and form can remain the same. When new

applications are added, new n-tuple templates are defined to

facilitate communication with the problem solver. The n-tuples

are not limited to a Python implementation.

In this case, the command is in the form of a conditional, so the

specializer must fill in the corresponding template by extracting

the bindings from the SemSpec.

Additionally, the direct object of the “push” command is a

pronoun; the analyzer cannot match pronouns with their

antecedents, so the specializer uses a combination of syntactic and

semantic information to perform reference resolution (Oliva et al,

2012). In this case, the antecedent of “it” is “the box near the

green box”, so the specializer passes this information to the

problem solver in the n-tuple.

4.3 Problem Solver
The problem solver parses the n-tuple to determine the actions

needed, and then performs those actions in context. Language

almost always under-specifies meaning, so context plays a large

role in the Problem Solver. The core app, such as our MORSE

robot simulator, cannot be expected to maintain and exploit

context. The solver begins by determining the type of command,

which is here a conditional. Before it performs the command, it

must evaluate the truth of the condition.

In this example, the problem solver must determine which box is

“near the green box” and then determine whether that box has the

property red. Using the information provided by the specializer,

the solver searches through its data structure, which contains the

current and updated state of the simulated world. Once the solver

identifies the box that is located near the green box, it can

evaluate whether that box is red using its vision system or world

knowledge.

If the condition is satisfied, the robot performs the specified

action: in this case, “push it [the box near the green box] South!”

This action is considerably more complex than simply moving to

a box, and involves a nontrivial amount of trajectory planning.

First, the solver disambiguates the location of the box by

searching through its data structures. Then, it determines that to

push the box South, it must move to the North side of the box

(avoiding obstacles along the way), rotate to face the box, and

move South. This results in pushing the box South. The planning

functionality is encapsulated and could be replaced by one of the

elaborate trajectory planners in the literature.

Finally, the call to execute a move action is made through the

wrapper class of the robot or simulator API, here MORSE. This

additional level of abstraction allows the system to work with an

arbitrary robot or simulator, assuming it supports the same

primitives.

4.4 Simulator
The demo system is built on top of MORSE (Echeverria et al,

2011), which in turn relies on Blender for 3d visualization.

MORSE is an open-source simulator designed for academic

robotics. While our system is designed to work on an arbitrary

simulator, it has been influenced by the specifications of this one.

MORSE provides some useful functionality, including realistic

physics and a variety of interfaces (including the Python bindings

we use). It also has some key limitations, such as restricted

functionality and the lack of path planning. The use of Blender

allows for realistic physics simulations, and easy modeling.

4.5 Alternate Platforms
While we demo our system with the MORSE simulator, we are

also considering physical robot platforms. A leading option is the

QRIO robot, which was developed by Sony. We are working on

incorporating QRIO in conjunction with a research partner and are

exploring other possibilities.

4.6 Additional System Features
The system also incorporates several other key features that aid

both its semantic understanding and its functionality. First, as

mentioned above, the specializer performs basic referent

resolution between pronouns and their antecedents. This is done

by maintaining a LIFO stack of the syntactic heads of past

Nominal Phrases; when a pronoun is encountered, the specializer

matches its syntactic and semantic context with the most recent

compatible object reference on the stack. This procedure is

somewhat novel because it incorporates semantic features, as well

as syntactic ones, in determining the compatibility of a pronoun

and its antecedent. For example, if the robot is instructed to

“push” something, the specializer checks that the antecedent is

“movable”, using the ontology lattice.

Second, the specializer resolves cases of the “anaphoric one”

using a related but distinct method. The usage of the anaphoric

one is problematic because it often refers simply to an

https://docs.google.com/file/d/0B6rDSJGnf4t6SlhyeG9NcEpZdTQ/edit?pli=1
https://docs.google.com/file/d/0B6rDSJGnf4t6SlhyeG9NcEpZdTQ/edit?pli=1

antecedent’s category. For example, in the sentence “John has a

red cup and I have a green one”, one refers to the category of

“cup”. Research suggests that discourse and semantic context are

necessary for proper resolution (Salmon-Alt et al, 2001). Our

system has semantic and world knowledge, and it uses these

contextual features in the resolution process; qualifiers in the

antecedent, such as “red”, are compared with the anaphor’s

qualifiers (“green”), and are added iteratively until the system is

able to locate a referent in the simulated world.

Finally, the system handles under-specified input via appropriate

clarification dialogs. The problem solver has information about

the simulated world, so it can determine when to query the user

for more information. If the user instructs the robot to move to

“the red box”, and there are two red boxes, the system asks:

“which red box?” The user might reply: “the small one”. This

clarification process allows the system to interact with the user,

and continues until the input is properly specified. It then uses

one-anaphora resolution to determine the correct referent.

.

5. RELATION TO PRIOR WORK
In addition to the early work on SHRDLU, there has also been

some recent work on using natural language to control robots. In

contrast to Winograd’s work— as well as our own— these

approaches focus on learning from examples (Howard et al.

2014).

Both our work and Winograd’s focus on a specific domain

(Winograd, 1971). SHRDLU knew the properties of blocks, and

understood how to interact with them specifically. While our

Analyzer is general, our Problem Solver (Figure 1) is specific to

each application.

SHRDLU analyzed the sentence in terms of the definitions of the

individual words. It was not designed to be adapted to different

tasks. In contrast, our modular system allows for portions to be

used for different tasks (such as metaphor analysis). For

SHRDLU, language understanding was highly coupled with the

simulated world, and the world was re-simulated based on the

language. In order to model a more realistic interaction with

robots, our problem solver issues commands to a robot simulator

API, which could be replaced with a robot API.

Recent work has also approached the problem of providing a

natural language interface for robots. Matuszek et al. learned a

parser based on pairs of English commands and control language

expressions In contrast, our work builds upon the Embodied

Construction Grammar(ECG), which we believe allows us to

better understand the intentions of the human, because embodied

semantics directly models intentional aspects of language. ECG

constructions can also capture indirect speech acts like: “I want

the red boxed moved North”.

Other work has focused on robots asking humans for help when

stuck (Tellex et al.). We implement a basic request for

clarification, since scope of our work is to perform commands

issued by the user. However, in an environment where the robot

has more autonomy, the need to ask with assistance on a task—

and not just ask for clarification about a command—can be

crucial. All of this requires a much richer NLU system, like ECG.

6. CONCLUSION
This paper demonstrates a fully integrated yet modular system

that provides a natural language interface, based on embodied

semantics, to a robotic simulator. In combination with (Oliva et al,

2012) this demonstrates that the ECG and Analyzer architecture

of Figure 2 can be used for diverse applications: solitaire, robotic

control, and metaphor analysis. The Spanish version further

illustrates the flexibility of the system. The use of the ECG allows

for a deep semantic understanding, which supports full treatment

of different input languages, as well as providing solid framework

for analyzing embodied concepts, such as motion and spatial

relations. The main goal of this work is not just in the domain of

robotics, but rather a general NLU front end for autonomous

systems.

6.1 Limitations
The primary limitation of the current system is scale. We have

implemented and tested English grammars much richer than

shown here, but well short of complete coverage (Feldman,

Dodge, and Bryant 2009). This is a focus of current research. In

order to facilitate more natural interactions, we have also begun

the integration of a spoken language recognizer. But our restricted

domains should support much more robust recognition.

6.2 Ongoing Work
This project is still in active development. In the domain of

robotics, we have begun to study more complex (possibly

humanoid) robots operating in complex real-world situations. We

are also exploring totally different NLU tasks including the

interpretation of metaphorical language.

On the system level, scaling remains the core issue. The

constructional structure of a language (e.g., English) is complex

but bounded. We believe that enough is now understood to

support realization of the fixed compositional subset of a

language.

We have also implemented a morphological pre-processing

system that reduces the number of necessary constructions and

exploits the existing schema lattices in the grammar. Additionally,

we have reduced the need for lexical constructions by developing

a new method of expanding the lexicon, which involves inserting

“tokens” of various syntactic and semantic categories into a token

list (e.g., “red” is a token of the “color” type). The tokens do not

need to be read in when the grammar is compiled. This allows us

to significantly increase the size of the lexicon, while maintaining

the complex semantics of the grammar.

For full coverage, the lexicon and idiomatic usage of each domain

will need to be captured, almost certainly through incremental

machine learning. Syntactic and semantic usage frequencies can

be exploited as well. We could also benefit from the lessons

learned in dialog systems (McTear 2002).

For coupling the general NLU front end to varying application

domains, some additional system work should be done. As with

any system coupling, the ontology referenced by Analyzer needs

to be shared with that of the Problem Solver in order to give both

modules the relevant information about the terms used. We are

hopeful that RDF/OWL will be helpful here, but have not tried

this yet.

Obviously enough, we should test our ideas in more realistic (or

real) environments, including those with multiple agents. We are

exploring several possible applications and welcome ideas and

collaboration on this.

7. ACKNOWLEDGMENTS
We thank Luca Gilardi of the International Computer Science

Institute for his help in designing the system framework and also

the reviewers for several insightful comments. This research was

supported by the Office of Naval Research (Grant Code:

N000141110416).

8. REFERENCES
[1] Barrett, L. R. 2010. An Architecture for Structured,

Concurrent, Real-Time Action. Ph.D. diss., Department of

Computer Science, University of California at Berkeley

[2] Bryant, J. E. 2008. Best-Fit Constructional Analysis. Ph.D.

diss., Department of Computer Science, University of

California at Berkeley

[3] Chang N. 2008. Constructing grammar: A computational

model of the emergence of early constructions. Ph.D. diss.,

Computer Science Division, University of California at

Berkeley

[4] Echeverria, G.; Lassabe, N.; Degroote, A. and Lemaignan, S.

2011. Modular open robots simulation engine: Morse. In the

proceedings of the 2011 IEEE International Conference

Robotics and Automation, 46-51 IEEE.

[5] Feldman J.; Dodge E.; and Bryant J. A Neural Theory of

Language and Embodied Construction Grammar. In The

Oxford Handbook of Linguistic Analysis, Heine B. and

Narrog H. 111-138, Oxford University Press, 2009

[6] Affordances, Actionability, and Simulation. J. Feldman , S.

Narayanan. First Workshop on Affordances: Affordances in

Vision for Cognitive Robotics, held in conjunction with

Robotics Science and Systems 2014 (RSS 2014), Berkeley,

California

[7] Howard, T. M., Tellex, S., and Roy, N. 2014. A Natural

Language Planner Interface for Mobile Manipulators. In

Proc. IEEE Int’l Conf. on Robotics and Automation (ICRA).

[8] Matuszek, M; Herbst, E, Zettlemoyer, L; and Fox, D. 2012.

Learning to Parse Natural Language Commands to a Robot

Control System. In Proceedings of the International

Symposium on Experimental Robotics (ISER)

[9] McTear, M. 2002 Spoken dialogue technology: enabling the

conversational user interface. ACM Computing Surveys.

[DOI: 10.1145/505282.505285]

[10] Mok E., 2008. Ph.D. diss., Department of Computer Science,

University of California, Berkeley, CA

[11] Narayanan, S. (1999), Reasoning About Actions in

 Narrative, IJCAI '99, pp. 350-358.

[12] Oliva J.; Feldman J.; Giraldi L. and Dodge E. Ontology

Driven Contextual Reference Resolution in Embodied

Construction Grammar. 2012. In the proceedings of the 7th

Annual Constraint Solving and Language Processing

Workshop. Orléans, France

[13] Salmon-Alt, S; Romary, L. Reference Resolution Within the

Framework of Cognitive Grammar, 2001. International

Colloquium on Cognitive Science, San Sebastian: Spain.

[14] Tellex, S; Knepper, K; Li, A; Rus, D; and Roy, D. 2014

Asking for Help Using Inverse Semantics. Proceedings of

Robotics: Science and Systems, Berkeley, CA

[15] Winograd, T. 1971 Procedures as a Representation for Data

in a Computer Program for Understanding Natural Language,

Technical Report 235, MIT AI

Appendix A: SemSpec example

Below is the Analyzer’s SemSpec output for the sentence: “Robot1, if the box near the green box is red, push it South!” In

order to conserve space and also illustrate the entire constructional tree, many of the constructional roles and schemas have

been collapsed. Small boxes with the same number denote items that are co-indexed (bound).

Appendix B: n-tuple example
“Robot1, if the box near the green box is red, push it South!”

Below is a representation of the N-Tuple; the actual Python code is shown in the supplementary materials. This particular n-

tuple contains multiple nested n-tuples (a condition and a command), because a conditional command is relatively complex.

Return_type: error_descriptor,

Predicate_type: conditional

Parameters:

 Kind: Conditional

 Condition:

 Protagonist: Object-Descriptor:

 Type: box

 Givenness: uniquely-Identifiable

 Location-Descriptor:

Relation: Near

 Object-Descriptor:

 Type: box

 Givenness: Uniquely-Identifiable

 Color: green

 Predication: (Color: Red)

 Kind: Query

 Action: be

 Command:

 Kind: cause

 Causal-Process:

 Protagonist: Robot1_instance

 Control_State: Ongoing

 Speed: 0.5

 Distance: (units: square, value: 8)

 Acted-Upon: Object-Descriptor:

 Type: Box

 Givenness: Uniquely-Identifiable

 Location-Descriptor:

Relation: Near

 Object-Descriptor:

 Type: box

 Givenness: Uniquely-Identifiable

 Color: green

 Kind: Execute

 Action: Force-Application

 Affected-Process:

 Direction: None

 Protagonist: Object-Descriptor

Type: Box

 Givenness: Uniquely-Identifiable

 Location-Descriptor:

Relation: Near

 Object-Descriptor:

 Type: box

 Givenness: Uniquely-Identifiable

 Color: green

 Heading: South

 Control_state: Ongoing

 Speed: 0.5

 Distance: (units: square, value: 8)

 Kind: Execute

 Causer: Robot1_instance

 Action: push_move

	1. NATURAL LANGUAGE INTERFACES
	2. EMBODIED CONSTRUCTION GRAMMAR
	3. SYSTEM ARCHITECTURE
	3.1 Supported Input

	4. Extended Example: Robot Simulation
	4.1 Analyzer
	4.2 Specializer
	4.3 Problem Solver
	4.4 Simulator
	4.5 Alternate Platforms
	4.6 Additional System Features

	5. RELATION TO PRIOR WORK
	6. CONCLUSION
	6.1 Limitations
	6.2 Ongoing Work

	7. ACKNOWLEDGMENTS
	8. REFERENCES
	Appendix B: n-tuple example

