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Abstract—For robots to effectively collaborate with humans, it
is critical to establish a shared mental model amongst teammates.
In the case of incongruous models, catastrophic failures may
occur unless mitigating steps are taken. To identify and remedy
these potential issues, we propose a novel mechanism for enabling
an autonomous system to detect model disparity between itself
and a human collaborator, infer the source of the disagreement
within the model, evaluate potential consequences of this error,
and finally, provide human-interpretable feedback to encourage
model correction. This process effectively enables a robot to
provide a human with a policy update based on perceived
model disparity, reducing the likelihood of costly or dangerous
failures during joint task execution. This paper makes two
contributions at the intersection of explainable AI (xAI) and
human-robot collaboration: 1) The Reward Augmentation and
Repair through Explanation (RARE) framework for estimating
task understanding and 2) A human subjects study illustrating
the effectiveness of reward augmentation-based policy repair in
a complex collaborative task.

Index Terms—Explainable AI; Policy Explanation; Human-
Robot Collaboration; Reward Estimation; Joint Task Execution

I. INTRODUCTION

Shared expectations are crucial for fluent and safe team-
work. Establishing a common mental model of a task is essen-
tial for human-robot collaboration, where each team member’s
skills and knowledge may be combined to accomplish more
than either could in isolation [16], [24], [30]. However, gaining
insight into a collaborator’s decision-making process during
task execution can be prohibitively difficult, requiring the
agent to have the capability to perform policy explanation
[17]. Further, taking corrective actions when a team member’s
comprehension of the task doesn’t match your own requires
one to not just indicate a problem with the policy, but also to
identify the root cause of the incongruousness.

Within society, the roles and responsibilities being assigned
to robots have grown increasingly complex, reaching the
boundaries of social integration. As this continues, it is rea-
sonable to assume people will increasingly turn towards robots
for completing important collaborative tasks with real conse-
quences of failure, such as search and rescue [7], housekeeping
[13], and personal assistance for the elderly [29], [33]. Pro-
viding these autonomous systems with the ability to identify
and explain potential failures or root causes of sub-optimal
behavior during collaboration will be essential to establishing

Fig. 1: A participant plays a collaborative, color-based Sudoku
variant with a robot during a human subjects study evaluating
the proposed framework. Using RARE, the robot is able to
identify, indicate, and explain potential failure modes of the
game based on the human’s predicted understanding of the
game’s reward function.

appropriate levels of trust and reliance, while simultaneously
improving the task understanding and performance of human
operators.

Consider the problem of resource allocation and asset task-
ing during a collaborative search and rescue operation, where a
human operator is commanding a fleet of UAVs. If the human
provides a sub-optimal flight plan to an agent that provides
poor coverage or exceeds its flight range, a system that
could both generate human-interpretable feedback indicating
the potential failure mode associated with the human’s action
and provide a justifying explanation would be far more useful
than one that could not. One might expect such a capability
to improve both operator task proficiency and failure rates.

To provide usable feedback for avoiding sub-optimal be-
haviors expected of a collaborator, we introduce a framework
that leverages the assumption that sub-optimal collaborator
behavior is the result of a misinformed understanding of the
task rather than a problem with the collaborator’s rationality.
In terms of a task defined through a Markov Decision Process,
a human’s poor action selections should be attributable to a
malformed reward function rather than a malformed policy
search algorithm. Building on this assumption, we believe a
useful autonomous collaborator should be able to 1) infer the
most likely reward function used as a basis for a human’s



behaviors; 2) identify the single most detrimental missing
piece of the reward function; and 3) communicate this back
to the human as actionable information.

Toward this goal, we propose Reward Augmentation and
Repair through Explanation (RARE), a novel framework for
improving human-robot collaboration through reward coach-
ing. RARE enables a robot to perform policy estimation during
a collaborative task and offer corrections to a teammate’s
mental model during joint task execution. Our model estimates
the most likely reward function that explains the collaborator’s
behavior and provides a repairing explanation meant to enable
the collaborator to update their reward function (task compre-
hension) and policy (behavior). The two primary contributions
of our work are:
• Reward Augmentation and Repair through Explanation

(RARE), a novel framework for understanding and cor-
recting an agent’s decision-making process, which es-
timates an agent’s understanding of a domain’s reward
function through their behavior and provides corrective
explanations to repair detected issues.

• A human subjects study-based evaluation of RARE,
showing both the technical feasibility of the approach
alongside empirical results illustrating its effectiveness
during a complex human-robot collaboration.

II. BACKGROUND AND RELATED WORK

Much of the recent work in human-robot collaboration
focuses on the common goal of making robots a more accept-
able, helpful, trustworthy, and functional part of our day-to-
day life. Throughout the established literature on human-robot
collaboration, a majority of the attention has been placed on
providing capabilities to enable robots to adapt to their human
collaborators, as opposed to providing them with the tools
needed to improve their human collaborators’ behaviors for
more productive joint task execution.

One important trend in human-robot collaboration has been
to improve robots’ awareness of human behavior [2], [9],
[14]. These approaches primarily focus on enabling a robot
to successfully adapt and perform tasks in the presence of
humans rather than enabling them to collaborate on equal
footing with people. An effective approach to collaboration has
been to enable the robot estimate a human collaborator’s belief
[15] in order to plan ‘in their shoes’, allowing for a better
understanding of their decision-making process and the factors
influencing their choices. Recent work [26] has used Inverse
Reinforcement Learning (IRL) [23] to infer human behavior
given a known goal. This work assumes the human holds
an imperfect dynamics model for the domain, and creates a
shared control scheme to invisibly correct the disparity. As
our approach attributes suboptimal behavior to a human’s
imperfect reward model, we find applicability to scenarios
(such as cognitive tasks) where shared control isn’t a viable
solution. Unfortunately, existing approaches do not provide
mechanisms where this perspective-taking can be used to
improve a human’s performance and awareness on a task —
rather, they mainly focus on mechanisms for allowing a robot

to adapt to a human. Work by Imai and Kaneko has provided
a method to estimate a human’s false beliefs about a domain
[19], with the intent to allow a robot to dispel said beliefs.
Work by Faulkner et al. models human belief to generate
minimal communication [12], enabling a robot to effectively
ask for help from a human oracle, but does not investigate the
reverse scenario of providing succinct help to a human agent.
Implicit communication [11], [20] has also been investigated,
utilizing a robot’s actions to provide actionable signal about
its intent in collaborative scenarios.

One popular approach is to develop a “theory of mind”
about one’s collaborator [10], [14], [28], [34] to effectively
understand their knowledge state, goals, and beliefs. Work by
Devin and Alami [10] estimates the information the human
might be missing to minimize the conveyance of unnecessary
information. In work by Leyzberg et al. [22], it is shown that
personalized interactions lead to better results, while in [25]
trust is better preserved and maintained by performing actions
that respect a human’s preferences.

During collaboration, interruptions are necessary for effec-
tive resynchronization of expectations. A great deal of work
has been performed to study how [27] and when [4], [6],
[31] an autonomous agent should interrupt a teammate, how
to personalize interruptions [8], and even how interruptions
can cause more errors in skill-based tasks [21]. Our work
addresses a crucial technical gap as it not only estimates
a collaborator’s belief about the reward function of their
current task, but also infers the root cause for inaccuracies
encoded in said belief. Doing so provides the infrastructure
needed for achieving the autonomous repair of a collabora-
tor’s policy through explanations generated online during task
execution intended to illustrate and eliminate their root cause.

III. A FRAMEWORK FOR REWARD AUGMENTATION AND
REPAIR THROUGH EXPLANATION

In this section we detail the theoretical framework of Re-
ward Augmentation and Repair through Explanation (RARE),
wherein we utilize a Partially Observable Markov Decision
Process (POMDP) coupled with a family of Hidden Markov
Models (HMMs) to infer and correct a collaborator’s task
understanding during joint task execution. The central in-
sight underpinning the proposed method is that sub-optimal
behaviors can be characterized as an incomplete or incor-
rect belief about the reward function that specifies the task
being performed. By proposing potential (erroneous) reward
functions and evaluating the behavior of a virtual agent opti-
mizing its policy using these functions, our approach allows
a robot to determine potential sources of misunderstanding.
Once a plausible reward function is discovered that explains
the collaborator’s behavior, a repairing explanation can be
generated and provided if the benefit of correction outweighs
the consequences of ignoring it.

The framework can be characterized through three inter-
connected components responsible for: 1) estimating a col-
laborator’s comprehension of a domain’s reward function; 2)
determining a policy for trading-off between collaborative



(a) Task executions given two different comprehensions of a
gridworld domain’s reward function.

(b) Incorporation of reward comprehension to infer an agent’s
likely policy. State (2,2) indicates partial knowledge of the
domain reward function, while (2’,2’) indicates full knowledge.

Fig. 2: An example of two possible comprehensions of a
domain’s reward function. (a)-left: The agent knows the true
reward of the domain. (a)-right: The agent does not know
about the +100 reward, and behaves rationally given this
malformed reward function. (b): Latent reward comprehension
variables differentiating state (2,2) and (2’,2’) provide a hy-
pothesis to better explain the agent’s behavior, distinguishing
between the scenarios represented in (a)-left and (a)-right.

task execution and intervention; and 3) formulating corrective
explanations for reward function repair. For the remainder of
the section, we focus on the use case where the collaborating
agent is a human and the agent employing RARE is a robot
jointly executing a task with them.

A. Estimation of Reward Comprehension

The core insight of RARE is that sub-optimal behavior is
an indicator of a malformed reward function being used by
an otherwise rational actor. Thus, if it is possible to determine
which reward function the actor is using, it will be possible
to identify problematic misconceptions that may contribute
to adverse behavior. As a result of this formulation, RARE
necessarily assumes that the agent implementing it has a
complete specification of the domain’s true reward function.

To determine which components of the reward function
the human collaborator is using, RARE utilizes an HMM
that incorporates both state features of the world (“world
features”) and latent state features that indicate knowledge of
corresponding components of the domain’s reward function
(“comprehension features”). In the example shown in Figure
2, the reward function has two components: a +10 reward for
entering the top left cell and a +100 reward for entering the
top right cell. The transition probabilities of a given state are
directly computed from a policy trained on the reward function

specified by the values of the comprehension features in the
state.

We define an augmented HMM (RARE-HMM) as the 7-
tuple λ = {S,O,M, π,A,B, τ} that estimates the likelihood
of a state-action trajectory of an observed agent given a
particular reward function, where:
• S = s0, s1, ..., sN is the finite set of states the observed

agent can be in.
• O = o0, o1, ..., oM is the finite set of possible observa-

tions, which correspond to the effects of the action most
immediately taken by the observed agent.

• M is a Markov Decision Process (S,A, T,R) where S
is the set of states in the MDP, A is the set of actions an
agent may take (A = O), T is a stochastic transition func-
tion describing the action-based state transition dynamics
of the model, and R is a reward function. Intuitively, M
serves as a simulator for an agent in the task domain.

• π is a policy trained to maximize reward in M .
• A is a stochastic transition matrix, indicating the transi-

tion probability from state i to state j:
Ai,j = P (qt = sj |qt−1 = si), where 0 ≤ i, j ≤ N − 1,
qt is the state at time t, and ∀i ∈ [0, N ],

∑N
j=0Ai,j = 1.

These probabilities are drawn directly from the compo-
sition of the transition dynamics function MT and π. In
other words, A represents the transition likelihoods for
an agent following policy π in M .

• B is the stochastic observation emission matrix, indicat-
ing the probability of getting observation j at time t in
state i: Bi,j = P (vt = oj |qt = si), where 0 ≤ i ≤ N ,
0 ≤ j ≤ M , and vt is the observation emitted at time t.
∀i ∈ [0, N ],

∑M
j=0Bi,j = 1.

• τ is the distribution describing the probability of starting
in a particular state s ∈ S such that

∑N
i=0 τi = 1.

Specifically, RARE utilizes a set of such HMMs Λ, where
each member λ ∈ Λ uses a unique reward function.

B. Collaborative Task Execution and Reward Repair

For a given collaborative task, we define the RARE agent’s
behaviors with a policy that solves an augmented POMDP
(RARE-POMDP) defined by the 6 tuple: (S,A, T,R,Ω,O)
where:
• S is the set of world states, consisting of both traditional

features W (“world features”) and additional latent fea-
tures C indicating the collaborator’s understanding of the
domain’s reward function (“comprehension features”).
We formulate the set of comprehension features as a
vector of boolean variables indicating whether a particular
component of the reward function is known by the
collaborator.

S =

W−
C

 ,W =

xy
...

C =


r1

r2

...
rn


• A is the set of actions, consisting of both task-specific

physical actions and reward repair-specific social actions.



Fig. 3: Partial visualization of comprehension features for
a gridworld domain with two reward factors, one at each
terminal reward state. Four variants of s2 are shown, each
indicating a different level of reward function awareness.
Observing an agent transition from state s2 to s3 provides
evidence suggesting they may not know about the larger
reward r2 in the top-right, but do know about reward r1.

• T is a transition function specifying state transitions as
a function of action performed. As RARE models a
collaborative process, the dynamics introduced by the
collaborator’s actions are also represented within this
function, but are assumed to be known given known
comprehension features (i.e., if the agent’s reward and
policy are assumed to be known, its behavior in a given
state is also known).

• R is a reward function specifying the value of executing
an action in a given state.

• Ω is the set of all possible observations. In a RARE-
POMDP, each observation corresponds to a particular
RARE-HMM being the most likely explanation for a
collaborator’s behavior, signaling the current state of their
reward comprehension (i.e., their understanding of the
reward function).

• O is a function describing observation emission proba-
bilities for a given state. In RARE, the emission function
must be designed to encourage congruence between a
state’s comprehension features and the RARE-HMM with
the corresponding reward function in Ω. In other words, a
RARE-HMM has higher likelihood if its reward function
contains the components indicated by the current state’s
comprehension features.

The observation emission function presents an important
design decision for implementing a RARE-POMDP in a given
domain. This function provides a link between the RARE-
HMMs, each representing an agent’s expected behavior given
a particular understanding of a reward function, and the
RARE-POMDP that is being solved to maximize the success
of the collaboration. In this work, we propose a softmax
scoring function based on the likelihood of the collaborator’s

action sequence for each potential RARE-HMM. For a given
observed collaborator trajectory T , RARE-HMM/observation
oi ∈ Ω and state s ∈ S, we propose O such that:

P (oi|s) =
exp(P (T |oi))∑|Ω|
j=0 exp(P (T |oj))

Intuitively, this choice of O enforces that the RARE-
POMDP’s estimate for which reward function the collaborator
is following is proportional to the likelihood that their behavior
was informed by a policy derived from it. In applications
where there is not a 1-to-1 correspondence between available
RARE-HMMs and potential reward functions (i.e., there are
not 2n RARE-HMMs defined for n reward function compo-
nents), a more clever approach may be merited.

The RARE-POMDP introduces the opportunity for the
agent to make the decision to execute social actions aimed
at better informing a collaborator about the domain’s reward
function. In other words, the agent may execute a commu-
nicative action to explicitly inform a collaborator about part
of the reward function, directly changing the value of a latent
comprehension feature (e.g., the knowledge of r2’s existence
in Figure 3). Even though such an action may not directly
advance the task toward completion, it may invariably result
in higher net reward, as it can improve the collaborator’s policy
by informing them of high reward states or harshly penalized
states that may lead to task failure.

C. Explanation Generation

The RARE framework allows an agent to estimate a col-
laborator’s reward function during joint task execution. This
is a powerful piece of information, but it is far more useful in
a collaborative context when paired with actions that enable
one to augment a collaborator’s understanding of the task.
RARE uses this information to decide what and when to
communicate, updating the collaborator’s reward function and
policy. For our application domain, we propose an algorithm
(Algorithm 1) that autonomously produces statements capable
of targeted manipulation of a collaborator’s comprehension
features based on anticipated task failures. Future work may
provide similar algorithms for providing information about
non-terminal state rewards or for more generally suggesting
collaborator reward function updates.

Intuitively, Algorithm 1 performs a forward rollout of a
policy trained on the estimated human reward function, which
may contain a subset of the information (factors) of the true
reward function known to the RARE agent. As in Figure 3,
the collaborator may only know of r1, so we say it is missing
the reward factor r2. Upon completing this rollout, we also
run forward rollouts for policies trained on reward functions
that include one more reward factor than the human’s (Figure
2). This step allows the RARE agent to find the most valuable
single reward update to provide the collaborator, updating their
policy by changing one reward factor at a time, following an
iterative interaction pattern previously validated within HRI
[3]. Finally, the update is serialized using designer-specified
action [32], state [17], and reward factor description functions.



Algorithm 1: Augment Terminal-State Reward Compre-
hension

Input: Factored Reward Function R, Set of Policies Π
Trained on Power Set of R, Estimated Human
Reward Function Rh, Domain MDP
M = (S,A, T ), Current state sc

Output: Semantic Reward Correction
1 rc ← 0; // Cumulative reward
2 s′ ← ∅;
3 // Simulate existing human policy
4 πh ←policy trained on Rh;
5 while s is not terminal do
6 // Perform forward rollout of πh
7 s′ ←MT (s, πh(s));
8 rc ← rc +R(s, πh(s), s′);
9 s← s′;

10 sh,terminal ← s; // Terminal state of human policy
11 rh ← rc;
12 // Find best single-comprehension-change
13 Π1 ← {π ∈ Π | π trained on R1 ∈ R s.t. R1 contains 1

additional factor of R∗ than Rh.};
14 πc ← ∅;
15 rπ ← rh;
16 for π ∈ Π1 do
17 s← sc;
18 rc ← 0;
19 while s is not terminal do
20 // Perform forward rollout of π
21 s′ ←MT (s, π(s));
22 rc ← rc +R(s, π(s), s′);
23 s← s′;

24 if rc > rπ then rc ← rπ, πc ← π;

25 feedback ← “If you perform {describe action(πh)}, you
will fail the task in state {describe state(sh,terminal)}
because of {describe reward(diff(Rh, Rπ))}”;

26 return feedback

IV. EXPERIMENTAL VALIDATION

To quantify the viability and effectiveness of RARE within
a live human-robot collaboration, we conducted a user study
wherein participants had to solve a complex collaborative puz-
zle game – a color-based variant of Sudoku – collaboratively
with a Rethink Robotics Sawyer manufacturing robot. In the
sections that follow, we present results characterizing par-
ticipants’ perception of a RARE-enabled robot that provides
guidance during complex collaborations to prevent task failure.
Failure prevention was attempted by the robot by means of ver-
bal interruptions taking place between the human’s selection
of a color to play and the human’s placement of that color.
Additionally, we investigate the role that justification plays
when providing advice that directly alters the collaborator’s
understanding of the game.

Participants were recruited into one of two treatments that

determined what the robot would communicate when inter-
rupting a human who is about to play a move that leads
to failure: a failure identification-only condition (‘control’)
where future failures are identified but not explained, and an
experimental condition (‘justification’) where future failures
are both identified and explained to the collaborator. Partici-
pants were assigned to a third, implicit baseline condition (‘no
interruption’) when no failures were detected and the robot did
not interrupt the game.

A. Hypotheses

We conducted a human-subjects study to investigate the
following hypotheses regarding RARE’s application within a
live human-robot collaborative puzzle-solving task:
• H1: Participants will find the robot more helpful and

useful when it explains why a failure may occur (i.e.,
participants in the ‘justification’ condition will find the
robot to be more helpful than in ‘no interruption’ condi-
tion and control condition.

• H2: Participants will find the robot to be more intelligent
when it gives justifications for its actions as compared to
the other conditions.

• H3: Participants will find the robot more sociable when it
provides justifications for its failure mitigation than when
it doesn’t.

B. Experiment Design

To evaluate our hypotheses, we conducted a between-
subjects user study using a color-based collaborative Sudoku
variant played on a table with a grid overlay using colored
toy blocks. Study participants were assigned into one of three
conditions:
• Control: The robot interrupts users that are about to make

erroneous block placements, indicating to them that it will
cause task failure.

• Justification: The robot interrupts users about to make
erroneous block placements, indicating that it will cause
task failure and explaining which game constraint will
inevitably be violated.

• No Interruption: An implicit condition for participants
that do not commit any errors and experience interrup-
tions by the robot.

During the game, participants place blocks concurrently
with the robot (i.e., without turn-taking), until the board is
filled. Participants were required to place blocks successively
in the grid cells most proximal to themselves, enforcing that
the final row for both human and robot were adjacent (the
middle of the board). As in Sudoku, certain blocks were pre-
placed on the board to limit the solution space of the task.

The robot was pre-trained on all possible solutions for
the game board, making it an expert on the task. Human
participants were not exposed to the board before beginning
the task, and as such could be considered novices trying to
solve the game online — making them susceptible to errors.
During gameplay, the robot is able to verbally interrupt the
human player before they place a block that will make the



Fig. 4: (Left) Board layout for the collaborative color-based
Sudoku variant. Each player concurrently fills in the three rows
closest to them with colored blocks, respecting the game’s
constraints. The adjacency of each player’s final row intro-
duces non-trivial coordination requirements. (Right) Diagram
of game flow across the three experimental conditions.

game impossible to solve, with the opportunity to provide
feedback that may avoid task failure.

C. Rules of the Game

Participants must collaboratively solve a color-based 6x6
cell Sudoku variant (Figure 4), by placing colored blocks on
the table until the grid is filled. There were six unique colors
of block available, with a large supply of all colors available
to each player. Both the participant and robot were required
to place blocks from right to left, nearest-row to farthest-row,
enforcing the constraint that the middle of the board is filled
last (where the need for coordination is maximized). The game
has two major constraints (Figure 5) limiting the gameplay
decisions of both the robot and the participant.
• Row Constraint: The first constraint restricts each row of

the game board to have only one of each color type.
• Adjacency Constraint: The second constraint requires that

no block may have a neighbor (assuming an 8-connected
grid) of the same color.

The robot and participant solve the game concurrently
and independently of each other’s pacing. We enforced the
restriction that players must solve the row closest to them in
full before moving on to successive rows, as this introduces
complex coordination requirements early in the game, as early
decisions will have non-obvious effects on allowable middle-
row configurations. In other words, blocks placed by the robot
in its third row will invariably restrict the gameplay of the
participant and vice versa. Per the design of the study, the
robot analyzes the gameplay decisions of the participant online
and generates an interruption should they make a move that
violates the constraints or inhibit successful game completion.

D. Study Protocol

Before the start of the experiment, informed consent was
obtained and participants were educated about the rules of
the game. We administered 1-move test puzzles, illustrating
specific scenarios possible within the Sudoku variant, to verify
their understanding of the game’s rules and various constraints.

Fig. 5: Two types of violation that can occur during gameplay.
Left: All colors within a row must be unique. Right: No color
can be next to itself.

Both participants and the robot were both free to place
blocks on the board as quickly as they were able. To play
a move in the game, participants were required to: 1) Move a
block from their block supply (the left-most grid of blocks
in Figure 1) to a staging area (the white area directly in
front of participant); 2) Solve a distractor task; and 3) Either
place the staged block onto the game board or return it to the
block supply and return to step 1. The staging dynamic was
implemented to provide the robot with a brief moment within
which it could interrupt the participant should their choice of
block be determined to cause an inevitable task failure. We
utilize multiplication problems as distractor tasks, though the
correctness of the participant’s answers was not verified.

Any blocks placed on the game board were considered final
and could not be changed. If the human placed a block that
prevented the game from being completed, the robot would
halt the game by saying, “I am sorry, the game cannot be
solved now.“ Otherwise, gameplay continued until the human
and robot both solved their respective sides of the board.

At the conclusion of the game, participants were lead away
from the game board to complete the a post-experiment survey
and exit interview. Following the experiment, a comprehensive
analysis of the dependent variables using objective measures
(e.g., task completion time, idle time and number interruption)
and subjective measures (e.g., Likert scale, open-ended survey
questions) were used to assess the overall effectiveness of the
proposed approach.

E. Implementation

Sawyer picked blocks from its supply and placed them
on the board according to the game’s rules. Concurrently,
the robot controller implemented RARE, which monitored
the current board state and human’s actions, occasionally
performing verbal interruptions according to the condition
being run. For this game, we abstracted reward into three
classes for comprehension variables: row constraint, adjacency
constraint, and victory. Human-understandable feedback was
generating using these with Algorithm 1. To make the game
solvable quickly, we used an algorithmically predetermined
board configuration to minimize the reachable states, acceler-
ating exploration of the solution space.



Fig. 6: Mean ratings of Helpfulness across three experimental
conditions. Tukey’s HSD test shows a statistically significant
difference between all three conditions.

F. Measurement

Our IRB-approved study was completed by 26 participants
recruited from a university population. Participants’ reported
gender skewed male (65% male), and ranged in age from 18 to
30 (M = 21.87; SD = 2.93). All participants came from STEM
backgrounds, and their familiarity with robots was relatively
high (M=5.08, SD=1.28) on a scale from 1 to 7.

An exit-questionnaire was administered to participants after
the conclusion of the game. The questionnaire was developed
using questions derived from established collaborative robotics
questionnaires [5], [18]. Participants were asked to rate their
opinion and experience with Sawyer in 7-point Likert-scale
items. Three concepts were identified which form the basis
of our hypotheses, based on the previous study of shared
autonomy and mixed observability of human and the agent:
Helpfulness, Sociability and Intelligence. To determine these
concepts, we first extracted the latent factors using principal
component analysis (PCA). The identified factors were re-
duced to 11 using the Kaiser criteria, selecting factors with
eigenvalues greater than 1. To spread variability more evenly
across each factor, we calculate the loadings of each variable
on each factor and applied varimax rotation. To identify the
items that can be combined to construct a valid scale, we
applied a cutoff point of correlation r > 0.6 to the factor
matrix.

Sociability was comprised of questions measuring partici-
pants’ opinions about Sawyer with respect to the interaction’s
naturalness, pleasantness, and comfort (α = 0.8557).

Helpfulness was comprised of questions measuring partici-
pants’ opinions about how useful and informative Sawyer was
during the interaction and its ability to help (α = 0.83).

Intelligence was comprised of questions measuring par-
ticipants’ opinions about how intelligent and knowledgeable
Sawyer was (α = 0.8734).

V. RESULTS AND DISCUSSION

A. Analysis

There were no anomalies or outliers detected in our com-
bined data set for any of the three concepts, but the datasets

Fig. 7: Mean ratings of Intelligence across three experimental
conditions. Tukey’s HSD test results show a significant effect
between the justification condition and the no-interruption
conditions, but not between no-interruption and control.

were positively skewed. We did not observe any multimodal-
ities in the distribution of data. We conducted an ANOVA to
test effects across our experimental conditions with respect to
perceptions of Sociability, Helpfulness, and Intelligence.

We found a significant effect from the ‘justification’ condi-
tion on perceived helpfulness (F (2, 23) = 7.23, p < 0.004),
confirming H1. Post-hoc comparisons using Tukey’s HSD
test (Figure 6) revealed that the justification condition resulted
in a significantly different level of Helpfulness as compared
to the control condition (p < 0.009) and the no-interruption
condition (p = 0.013).

We also found a significant effect caused by the justifica-
tion condition on our measure for intelligence (F (2, 23) =
6.99, p < 0.005), confirming H2. Post-hoc comparisons using
Tukey’s HSD test (Figure 7) revealed that the justification
condition resulted in a significantly different level of our
perceived intelligence measure as compared with the no-
interruption condition (p = 0.003), but not with the control
condition (p = 0.225). Hence, we cannot dismiss the null
hypothesis that a robot notifying a collaborator of a bad
action choice may not be differently perceived if it also offers
justification for its advice.

No significant effects were found with respect to perceptions
of sociability as a function of experimental condition (p =
0.1), thus we cannot validate H3.

Objectively, we observed that there were more terminations
of the game during the control condition as compared to
the justification condition (8/10 vs 2/10) which we did
not anticipate when designing our experiment. As the robot
preempts human actions that would lead to task failure in
both conditions, we anticipated that the our control condition
(notification of inevitable failure without justification) might
lead to longer completion times. To understand the behavior
of participants who ignored the robot’s warning, we looked to
the open-answer questions in our exit survey.

One of the two participants that had their game terminated
due to invalid block placement in the justification condition
indicated that they were too involved in the game and did not
listen to Sawyer’s advice and warnings:



”I was so much involved in completing the game, I com-
pletely missed [the warning] from the robot — I just heard
some sound from the robot and did not realize what it was
saying...”

The other participant indicated that they started to think of
Sawyer as a competitor and did not listen to its advice, despite
being briefed on the collaborative nature of the game at the
onset of the experiment:

”As soon as the game began, I forgot it was a collaborative
game and I became competitive and was not sure of advice
given by Sawyer”

In the control condition, the survey responses painted a clear
picture for the terminations — participants did not trust
Sawyer when it indicated that the human was about to
make a move that would cause the task to eventually
fail, when it did so without further explanation. They were
confused why the move was not valid, even though it looked
valid to them. They were skeptical with respect to Sawyer who
was not providing accompanying justification for its judgment
of their move, as evidenced by the following quotes from
participants’ survey responses:
• “Sawyer wasn’t forceful enough and was not giving me

the reasons why the move was wrong. So I couldn’t trust
him”

• “Response looked like hard coded and I did not find the
reason to think that Sawyer was addressing to me”

• “I felt that Sawyer was a robot that is good but I didn’t
know what his purpose was ... I feel he should have been
more forceful in stopping me doing the wrong moves.”

• “I did not believe it as it did not give details regarding
the wrong step”

We also found evidence in the post-experiment surveys
supporting the notion that providing justification alongside
reward feedback leads to a more positive user experience.
Many participants found easier to trust Sawyer when it was
providing an explanation alongside its advice. We also saw
evidence that the behavior in the justification condition was
affecting the way participants played, an important result.
• ”He was forward predicting the movement of the game

and telling me why my move was not right even though it
was the right move. I was able to trust him easily when
he gave the reasons”

• ”It helped me make sure that I made the correct deci-
sions”

• ”I learnt to think of moves ahead when Sawyer helped
me once with the game.”

• ”Sawyer’s input made me question my understanding of
the game”

Thus, we can conclude from the qualitative and quantitative
results of our user study that RARE provides tangible subjec-
tive and objective benefits during human-robot collaboration.
Our experimental results further show improvements beyond
standard failure mitigation techniques. Our results highlight
that justification is an important requirement for a robot’s
corrective explanation. Hence, we validate that our contribu-

tion is not a solution in search of a problem, but addresses
an important, underexplored capability gap in the HRI and
Explainable AI literature.

B. Opportunities for Future Work

Our proposed framework allows an agent to estimate and
provide corrections to a collaborator‘s reward function during
joint task execution. RARE’s effectiveness stems from its
ability to discover the root cause for an agent’s suboptimal be-
havior and provide targeted, interpretable feedback to address
it. One of the drawbacks of RARE is that the formulation of
reward factors by way of comprehension features causes the
state space to explode combinatorially, with non-trivial reward
functions causing RARE to easily become intractable.

There are many potential approaches for addressing this
problem of scalability: 1) Attention mechanisms and priors
to reduce comprehension features (i.e., making a priori as-
sumptions about what one’s collaborator knows); 2) State
abstractions to reduce state space [1]; and 3) Reward function
abstractions (i.e., removing the naive independence assumption
of rewards across states), approximations/simplifications, or
using a subset of potential reward function candidates.

Furthermore, in our implementation the RARE framework
estimates only missing rewards from the user‘s comprehension
of a domain’s true reward function. We are not considering the
cases where the user has an imagined reward not truly present
in the true reward function, or in other words, where the user
erroneously includes incorrect or non-existent reward signal in
their comprehension of the domain.

Based on the exit interviews of participants who ignored
the robot’s advice due to over-engagement in the game, where
participants said they were too busy to listen, a promising
direction for future work also includes investigating different
modalities for conveying reward repair information (e.g., in-
corporating nudging theory for non-invasive corrections).

Finally, we have considered only a single RARE agent
(expert) and a collaborator (novice). Natural extensions of this
work include relaxing assumptions about the RARE agent’s
knowledge of the true reward function (e.g., can RARE be
improved to enable two RARE agents with complementary
reward functions learn a stronger joint reward function from
each other’s feedback) or extending the work to larger teams.

VI. CONCLUSION

In this work we proposed Reward Augmentation and Repair
through Explanation, a novel framework for estimating and
improving a collaborator’s task comprehension and execution.
By characterizing the problem of suboptimal performance as
evidence of a malformed reward function, we introduce mech-
anisms to both detect the root cause of the suboptimal behavior
and provide feedback to the agent to repair their decision-
making process. We conducted a user study to investigate
the effectiveness of RARE over a standard failure mitigation
strategy, finding that RARE agents produce more successful
collaborations and are perceived as more helpful, trustwor-
thy, and as a more positive overall experience.
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[6] D. Brščić, T. Ikeda, and T. Kanda. Do you need help? a robot providing
information to people who behave atypically. IEEE Transactions on
Robotics, 33(2):500–506, 2017.

[7] J. Casper and R. R. Murphy. Human-robot interactions during the robot-
assisted urban search and rescue response at the world trade center. IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
33(3):367–385, 2003.

[8] Y.-S. Chiang, T.-S. Chu, C. D. Lim, T.-Y. Wu, S.-H. Tseng, and L.-C.
Fu. Personalizing robot behavior for interruption in social human-robot
interaction. In Advanced Robotics and its Social Impacts (ARSO), 2014
IEEE Workshop on, pages 44–49. IEEE, 2014.

[9] M. Cirillo, L. Karlsson, and A. Saffiotti. Human-aware task planning for
mobile robots. In Advanced Robotics, 2009. ICAR 2009. International
Conference on, pages 1–7. IEEE, 2009.

[10] S. Devin and R. Alami. An implemented theory of mind to improve
human-robot shared plans execution. In Human-Robot Interaction (HRI),
2016 11th ACM/IEEE International Conference on, pages 319–326.
IEEE, 2016.

[11] A. D. Dragan, S. Bauman, J. Forlizzi, and S. S. Srinivasa. Effects
of robot motion on human-robot collaboration. In Proceedings of the
Tenth Annual ACM/IEEE International Conference on Human-Robot
Interaction, pages 51–58. ACM, 2015.

[12] T. K. Faulkner, S. Niekum, and A. L. Thomaz. Robot dialog optimization
via modeling of human belief updates. 2017.

[13] J. Forlizzi. How robotic products become social products: an ethno-
graphic study of cleaning in the home. In Proceedings of the ACM/IEEE
international conference on Human-robot interaction, pages 129–136.
ACM, 2007.

[14] O. C. Görür, B. S. Rosman, G. Hoffman, and S. Albayrak. Toward
integrating theory of mind into adaptive decision-making of social robots
to understand human intention. 2017.

[15] J. Guitton, M. Warnier, and R. Alami. Belief management for hri
planning. BNC@ ECAI 2012, page 27, 2012.

[16] B. Hayes and B. Scassellati. Challenges in shared-environment human-
robot collaboration. In ”Collaborative Manipulation” Workshop at the
8th ACM/IEEE International Conference on Human-Robot Interaction.,
page 8, 2013.

[17] B. Hayes and J. A. Shah. Improving robot controller transparency
through autonomous policy explanation. In Proceedings of the 2017
ACM/IEEE international conference on human-robot interaction, pages
303–312. ACM, 2017.

[18] G. Hoffman. Evaluating fluency in human-robot collaboration. In
International conference on human-robot interaction (HRI), workshop
on human robot collaboration, volume 381, pages 1–8, 2013.

[19] J.-I. Imai and M. Kaneko. Development of robot which recognizes
user’s false beliefs using view estimation. In World Automation Congress
(WAC), 2010, pages 1–6. IEEE, 2010.

[20] R. A. Knepper, C. I. Mavrogiannis, J. Proft, and C. Liang. Implicit
communication in a joint action. In Proceedings of the 2017 acm/ieee
international conference on human-robot interaction, pages 283–292.
ACM, 2017.

[21] B. C. Lee and V. G. Duffy. The effects of task interruption on
human performance: a study of the systematic classification of human
behavior and interruption frequency. Human Factors and Ergonomics
in Manufacturing & Service Industries, 25(2):137–152, 2015.

[22] D. Leyzberg, S. Spaulding, and B. Scassellati. Personalizing robot
tutors to individuals’ learning differences. In Proceedings of the 2014
ACM/IEEE international conference on Human-robot interaction, pages
423–430. ACM, 2014.

[23] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, pages 663–670, 2000.

[24] S. Nikolaidis and J. Shah. Human-robot cross-training: computational
formulation, modeling and evaluation of a human team training strategy.
In Proceedings of the 8th ACM/IEEE international conference on
Human-robot interaction, pages 33–40. IEEE Press, 2013.

[25] S. Nikolaidis, Y. X. Zhu, D. Hsu, and S. Srinivasa. Human-robot mutual
adaptation in shared autonomy. In Proceedings of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction, pages 294–302.
ACM, 2017.

[26] S. Reddy, A. Dragan, and S. Levine. Where do you think you're going?:
Inferring beliefs about dynamics from behavior. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems 31, pages
1461–1472. Curran Associates, Inc., 2018.

[27] S. Satake, T. Kanda, D. F. Glas, M. Imai, H. Ishiguro, and N. Hagita.
How to approach humans?: strategies for social robots to initiate inter-
action. In Proceedings of the 4th ACM/IEEE international conference
on Human robot interaction, pages 109–116. ACM, 2009.

[28] B. Scassellati. Theory of mind for a humanoid robot. Autonomous
Robots, 12(1):13–24, 2002.

[29] M. Spenko, H. Yu, and S. Dubowsky. Robotic personal aids for mobility
and monitoring for the elderly. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 14(3):344–351, 2006.

[30] S. Tellex, R. Knepper, A. Li, D. Rus, and N. Roy. Asking for help using
inverse semantics. 2014.

[31] J. G. Trafton, A. Jacobs, and A. M. Harrison. Building and verifying a
predictive model of interruption resumption. Proceedings of the IEEE,
100(3):648–659, 2012.

[32] N. Wang, D. V. Pynadath, and S. G. Hill. The impact of pomdp-
generated explanations on trust and performance in human-robot teams.
In Proceedings of the 2016 international conference on autonomous
agents & multiagent systems, pages 997–1005. International Foundation
for Autonomous Agents and Multiagent Systems, 2016.

[33] K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Mat-
sumoto, M. Ishikawa, I. Shimoyama, and M. Inaba. Home-assistant
robot for an aging society. Proceedings of the IEEE, 100(8):2429–2441,
2012.

[34] Y. Zhao, S. Holtzen, T. Gao, and S.-C. Zhu. Represent and infer
human theory of mind for human-robot interaction. In 2015 AAAI fall
symposium series, volume 2, 2015.


	Introduction
	Background and Related Work
	A Framework for Reward Augmentation and Repair through Explanation
	Estimation of Reward Comprehension
	Collaborative Task Execution and Reward Repair
	Explanation Generation

	Experimental Validation
	Hypotheses
	Experiment Design
	Rules of the Game
	Study Protocol
	Implementation
	Measurement

	Results and Discussion
	Analysis
	Opportunities for Future Work

	Conclusion
	References

