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Abstract—For robots to effectively collaborate with humans, it
is critical to establish a shared mental model amongst teammates.
In the case of incongruous models, catastrophic failures may
occur unless mitigating steps are taken. To identify and remedy
these potential issues, we propose a novel mechanism for enabling
an autonomous system to detect model disparity between itself
and a human collaborator, infer the source of the disagreement
within the model, evaluate potential consequences of this error,
and finally, provide human-interpretable feedback to encourage
model correction. This process effectively enables a robot to
provide a human with a policy update based on perceived
model disparity, reducing the likelihood of costly or dangerous
failures during joint task execution. This paper makes two
contributions at the intersection of explainable AI (xAI) and
human-robot collaboration: 1) The Reward Augmentation and
Repair through Explanation (RARE) framework for estimating
task understanding and 2) A human subjects study illustrating
the effectiveness of reward augmentation-based policy repair in
a complex collaborative task.

Index Terms—Explainable AI; Policy Explanation; Human-
Robot Collaboration; Reward Estimation; Joint Task Execution

I. INTRODUCTION

Shared expectations are crucial for fluent and safe team-
work. Establishing a common mental model of a task is essen-
tial for human-robot collaboration, where each team member’s
skills and knowledge may be combined to accomplish more
than either could in isolation [16], [24], [30]. However, gaining
insight into a collaborator’s decision-making process during
task execution can be prohibitively difficult, requiring the
agent to have the capability to perform policy explanation
[17]. Further, taking corrective actions when a team member’s
comprehension of the task doesn’t match your own requires
one to not just indicate a problem with the policy, but also to
identify the root cause of the incongruousness.

Within society, the roles and responsibilities being assigned
to robots have grown increasingly complex, reaching the
boundaries of social integration. As this continues, it is rea-
sonable to assume people will increasingly turn towards robots
for completing important collaborative tasks with real conse-
quences of failure, such as search and rescue [7], housekeeping
[13], and personal assistance for the elderly [29], [33]. Pro-
viding these autonomous systems with the ability to identify
and explain potential failures or root causes of sub-optimal
behavior during collaboration will be essential to establishing

Fig. 1: A participant plays a collaborative, color-based Sudoku
variant with a robot during a human subjects study evaluating
the proposed framework. Using RARE, the robot is able to
identify, indicate, and explain potential failure modes of the
game based on the human’s predicted understanding of the
game’s reward function.

appropriate levels of trust and reliance, while simultaneously
improving the task understanding and performance of human
operators.

Consider the problem of resource allocation and asset task-
ing during a collaborative search and rescue operation, where a
human operator is commanding a fleet of UAVs. If the human
provides a sub-optimal flight plan to an agent that provides
poor coverage or exceeds its flight range, a system that
could both generate human-interpretable feedback indicating
the potential failure mode associated with the human’s action
and provide a justifying explanation would be far more useful
than one that could not. One might expect such a capability
to improve both operator task proficiency and failure rates.

To provide usable feedback for avoiding sub-optimal be-
haviors expected of a collaborator, we introduce a framework
that leverages the assumption that sub-optimal collaborator
behavior is the result of a misinformed understanding of the
task rather than a problem with the collaborator’s rationality.
In terms of a task defined through a Markov Decision Process,
a human’s poor action selections should be attributable to a
malformed reward function rather than a malformed policy
search algorithm. Building on this assumption, we believe a
useful autonomous collaborator should be able to 1) infer the
most likely reward function used as a basis for a human’s



behaviors; 2) identify the single most detrimental missing
piece of the reward function; and 3) communicate this back
to the human as actionable information.

Toward this goal, we propose Reward Augmentation and
Repair through Explanation (RARE), a novel framework for
improving human-robot collaboration through reward coach-
ing. RARE enables a robot to perform policy estimation during
a collaborative task and offer corrections to a teammate’s
mental model during joint task execution. Our model estimates
the most likely reward function that explains the collaborator’s
behavior and provides a repairing explanation meant to enable
the collaborator to update their reward function (task compre-
hension) and policy (behavior). The two primary contributions
of our work are:
� Reward Augmentation and Repair through Explanation

(RARE), a novel framework for understanding and cor-
recting an agent’s decision-making process, which es-
timates an agent’s understanding of a domain’s reward
function through their behavior and provides corrective
explanations to repair detected issues.

� A human subjects study-based evaluation of RARE,
showing both the technical feasibility of the approach
alongside empirical results illustrating its effectiveness
during a complex human-robot collaboration.

II. BACKGROUND AND RELATED WORK

Much of the recent work in human-robot collaboration
focuses on the common goal of making robots a more accept-
able, helpful, trustworthy, and functional part of our day-to-
day life. Throughout the established literature on human-robot
collaboration, a majority of the attention has been placed on
providing capabilities to enable robots to adapt to their human
collaborators, as opposed to providing them with the tools
needed to improve their human collaborators’ behaviors for
more productive joint task execution.

One important trend in human-robot collaboration has been
to improve robots’ awareness of human behavior [2], [9],
[14]. These approaches primarily focus on enabling a robot
to successfully adapt and perform tasks in the presence of
humans rather than enabling them to collaborate on equal
footing with people. An effective approach to collaboration has
been to enable the robot estimate a human collaborator’s belief
[15] in order to plan ‘in their shoes’, allowing for a better
understanding of their decision-making process and the factors
influencing their choices. Recent work [26] has used Inverse
Reinforcement Learning (IRL) [23] to infer human behavior
given a known goal. This work assumes the human holds
an imperfect dynamics model for the domain, and creates a
shared control scheme to invisibly correct the disparity. As
our approach attributes suboptimal behavior to a human’s
imperfect reward model, we find applicability to scenarios
(such as cognitive tasks) where shared control isn’t a viable
solution. Unfortunately, existing approaches do not provide
mechanisms where this perspective-taking can be used to
improve a human’s performance and awareness on a task —
rather, they mainly focus on mechanisms for allowing a robot

to adapt to a human. Work by Imai and Kaneko has provided
a method to estimate a human’s false beliefs about a domain
[19], with the intent to allow a robot to dispel said beliefs.
Work by Faulkner et al. models human belief to generate
minimal communication [12], enabling a robot to effectively
ask for help from a human oracle, but does not investigate the
reverse scenario of providing succinct help to a human agent.
Implicit communication [11], [20] has also been investigated,
utilizing a robot’s actions to provide actionable signal about
its intent in collaborative scenarios.

One popular approach is to develop a “theory of mind”
about one’s collaborator [10], [14], [28], [34] to effectively
understand their knowledge state, goals, and beliefs. Work by
Devin and Alami [10] estimates the information the human
might be missing to minimize the conveyance of unnecessary
information. In work by Leyzberg et al. [22], it is shown that
personalized interactions lead to better results, while in [25]
trust is better preserved and maintained by performing actions
that respect a human’s preferences.

During collaboration, interruptions are necessary for effec-
tive resynchronization of expectations. A great deal of work
has been performed to study how [27] and when [4], [6],
[31] an autonomous agent should interrupt a teammate, how
to personalize interruptions [8], and even how interruptions
can cause more errors in skill-based tasks [21]. Our work
addresses a crucial technical gap as it not only estimates
a collaborator’s belief about the reward function of their
current task, but also infers the root cause for inaccuracies
encoded in said belief. Doing so provides the infrastructure
needed for achieving the autonomous repair of a collabora-
tor’s policy through explanations generated online during task
execution intended to illustrate and eliminate their root cause.

III. A FRAMEWORK FOR REWARD AUGMENTATION AND
REPAIR THROUGH EXPLANATION

In this section we detail the theoretical framework of Re-
ward Augmentation and Repair through Explanation (RARE),
wherein we utilize a Partially Observable Markov Decision
Process (POMDP) coupled with a family of Hidden Markov
Models (HMMs) to infer and correct a collaborator’s task
understanding during joint task execution. The central in-
sight underpinning the proposed method is that sub-optimal
behaviors can be characterized as an incomplete or incor-
rect belief about the reward function that specifies the task
being performed. By proposing potential (erroneous) reward
functions and evaluating the behavior of a virtual agent opti-
mizing its policy using these functions, our approach allows
a robot to determine potential sources of misunderstanding.
Once a plausible reward function is discovered that explains
the collaborator’s behavior, a repairing explanation can be
generated and provided if the benefit of correction outweighs
the consequences of ignoring it.

The framework can be characterized through three inter-
connected components responsible for: 1) estimating a col-
laborator’s comprehension of a domain’s reward function; 2)
determining a policy for trading-off between collaborative



(a) Task executions given two different comprehensions of a
gridworld domain’s reward function.

(b) Incorporation of reward comprehension to infer an agent’s
likely policy. State (2,2) indicates partial knowledge of the
domain reward function, while (2’,2’) indicates full knowledge.

Fig. 2: An example of two possible comprehensions of a
domain’s reward function. (a)-left: The agent knows the true
reward of the domain. (a)-right: The agent does not know
about the +100 reward, and behaves rationally given this
malformed reward function. (b): Latent reward comprehension
variables differentiating state (2,2) and (2’,2’) provide a hy-
pothesis to better explain the agent’s behavior, distinguishing
between the scenarios represented in (a)-left and (a)-right.

task execution and intervention; and 3) formulating corrective
explanations for reward function repair. For the remainder of
the section, we focus on the use case where the collaborating
agent is a human and the agent employing RARE is a robot
jointly executing a task with them.

A. Estimation of Reward Comprehension

The core insight of RARE is that sub-optimal behavior is
an indicator of a malformed reward function being used by
an otherwise rational actor. Thus, if it is possible to determine
which reward function the actor is using, it will be possible
to identify problematic misconceptions that may contribute
to adverse behavior. As a result of this formulation, RARE
necessarily assumes that the agent implementing it has a
complete specification of the domain’s true reward function.

To determine which components of the reward function
the human collaborator is using, RARE utilizes an HMM
that incorporates both state features of the world (“world
features”) and latent state features that indicate knowledge of
corresponding components of the domain’s reward function
(“comprehension features”). In the example shown in Figure
2, the reward function has two components: a +10 reward for
entering the top left cell and a +100 reward for entering the
top right cell. The transition probabilities of a given state are
directly computed from a policy trained on the reward function

specified by the values of the comprehension features in the
state.

We define an augmented HMM (RARE-HMM) as the 7-
tuple � = fS;O;M; �;A;B; �g that estimates the likelihood
of a state-action trajectory of an observed agent given a
particular reward function, where:
� S = s0; s1; :::; sN is the finite set of states the observed

agent can be in.
� O = o0; o1; :::; oM is the finite set of possible observa-

tions, which correspond to the effects of the action most
immediately taken by the observed agent.

� M is a Markov Decision Process (S;A; T;R) where S
is the set of states in the MDP, A is the set of actions an
agent may take (A = O), T is a stochastic transition func-
tion describing the action-based state transition dynamics
of the model, and R is a reward function. Intuitively, M
serves as a simulator for an agent in the task domain.

� � is a policy trained to maximize reward in M .
� A is a stochastic transition matrix, indicating the transi-

tion probability from state i to state j:
Ai;j = P (qt = sj jqt�1 = si), where 0 � i; j � N � 1,
qt is the state at time t, and 8i 2 [0; N ];

PN
j=0Ai;j = 1.

These probabilities are drawn directly from the compo-
sition of the transition dynamics function MT and �. In
other words, A represents the transition likelihoods for
an agent following policy � in M .

� B is the stochastic observation emission matrix, indicat-
ing the probability of getting observation j at time t in
state i: Bi;j = P (vt = oj jqt = si), where 0 � i � N ,
0 � j � M , and vt is the observation emitted at time t.
8i 2 [0; N ];

PM
j=0Bi;j = 1.

� � is the distribution describing the probability of starting
in a particular state s 2 S such that

PN
i=0 �i = 1.

Specifically, RARE utilizes a set of such HMMs �, where
each member � 2 � uses a unique reward function.

B. Collaborative Task Execution and Reward Repair

For a given collaborative task, we define the RARE agent’s
behaviors with a policy that solves an augmented POMDP
(RARE-POMDP) defined by the 6 tuple: (S;A; T;R;
;O)
where:
� S is the set of world states, consisting of both traditional

features W (“world features”) and additional latent fea-
tures C indicating the collaborator’s understanding of the
domain’s reward function (“comprehension features”).
We formulate the set of comprehension features as a
vector of boolean variables indicating whether a particular
component of the reward function is known by the
collaborator.

S =

24W�
C

35 ;W =

264xy
...

375C =

26664
r1

r2

...
rn

37775
� A is the set of actions, consisting of both task-specific

physical actions and reward repair-specific social actions.



Fig. 3: Partial visualization of comprehension features for
a gridworld domain with two reward factors, one at each
terminal reward state. Four variants ofs2 are shown, each
indicating a different level of reward function awareness.
Observing an agent transition from states2 to s3 provides
evidence suggesting they may not know about the larger
rewardr 2 in the top-right, but do know about rewardr 1.

� T is a transition function specifying state transitions as
a function of action performed. As RARE models a
collaborative process, the dynamics introduced by the
collaborator's actions are also represented within this
function, but are assumed to be known given known
comprehension features (i.e., if the agent's reward and
policy are assumed to be known, its behavior in a given
state is also known).

� R is a reward function specifying the value of executing
an action in a given state.

� 
 is the set of all possible observations. In a RARE-
POMDP, each observation corresponds to a particular
RARE-HMM being the most likely explanation for a
collaborator's behavior, signaling the current state of their
reward comprehension (i.e., their understanding of the
reward function).

� O is a function describing observation emission proba-
bilities for a given state. In RARE, the emission function
must be designed to encourage congruence between a
state's comprehension features and the RARE-HMM with
the corresponding reward function in
 . In other words, a
RARE-HMM has higher likelihood if its reward function
contains the components indicated by the current state's
comprehension features.

The observation emission function presents an important
design decision for implementing a RARE-POMDP in a given
domain. This function provides a link between the RARE-
HMMs, each representing an agent's expected behavior given
a particular understanding of a reward function, and the
RARE-POMDP that is being solved to maximize the success
of the collaboration. In this work, we propose a softmax
scoring function based on the likelihood of the collaborator's

action sequence for each potential RARE-HMM. For a given
observed collaborator trajectoryT, RARE-HMM/observation
oi 2 
 and states 2 S, we proposeO such that:

P(oi js) =
exp(P(T joi ))

P j 
 j
j =0 exp(P(Tjoj ))

Intuitively, this choice of O enforces that the RARE-
POMDP's estimate for which reward function the collaborator
is following is proportional to the likelihood that their behavior
was informed by a policy derived from it. In applications
where there is not a 1-to-1 correspondence between available
RARE-HMMs and potential reward functions (i.e., there are
not 2n RARE-HMMs de�ned for n reward function compo-
nents), a more clever approach may be merited.

The RARE-POMDP introduces the opportunity for the
agent to make the decision to execute social actions aimed
at better informing a collaborator about the domain's reward
function. In other words, the agent may execute a commu-
nicative action to explicitly inform a collaborator about part
of the reward function, directly changing the value of a latent
comprehension feature (e.g., the knowledge ofr 2 's existence
in Figure 3). Even though such an action may not directly
advance the task toward completion, it may invariably result
in higher net reward, as it can improve the collaborator's policy
by informing them of high reward states or harshly penalized
states that may lead to task failure.

C. Explanation Generation

The RARE framework allows an agent to estimate a col-
laborator's reward function during joint task execution. This
is a powerful piece of information, but it is far more useful in
a collaborative context when paired with actions that enable
one to augment a collaborator's understanding of the task.
RARE uses this information to decide what and when to
communicate, updating the collaborator's reward function and
policy. For our application domain, we propose an algorithm
(Algorithm 1) that autonomously produces statements capable
of targeted manipulation of a collaborator's comprehension
features based on anticipated task failures. Future work may
provide similar algorithms for providing information about
non-terminal state rewards or for more generally suggesting
collaborator reward function updates.

Intuitively, Algorithm 1 performs a forward rollout of a
policy trained on the estimated human reward function, which
may contain a subset of the information (factors) of the true
reward function known to the RARE agent. As in Figure 3,
the collaborator may only know ofr 1, so we say it is missing
the reward factorr 2. Upon completing this rollout, we also
run forward rollouts for policies trained on reward functions
that include one more reward factor than the human's (Figure
2). This step allows the RARE agent to �nd the most valuable
single reward update to provide the collaborator, updating their
policy by changing one reward factor at a time, following an
iterative interaction pattern previously validated within HRI
[3]. Finally, the update is serialized using designer-speci�ed
action [32], state [17], and reward factor description functions.



Algorithm 1: Augment Terminal-State Reward Compre-
hension
Input: Factored Reward FunctionR, Set of Policies�

Trained on Power Set ofR, Estimated Human
Reward FunctionRh , Domain MDP
M = ( S; A; T ), Current statesc

Output: Semantic Reward Correction
1 r c  0; // Cumulative reward
2 s0  ; ;
3 // Simulate existing human policy
4 � h  policy trained onRh ;
5 while s is not terminaldo
6 // Perform forward rollout of� h

7 s0  M T (s; � h (s)) ;
8 r c  r c + R(s; � h (s); s0);
9 s  s0;

10 sh;terminal  s; // Terminal state of human policy
11 r h  r c;
12 // Find best single-comprehension-change
13 � 1  f � 2 � j � trained onR1 2 R s.t. R1 contains 1

additional factor ofR� thanRh .g;
14 � c  ; ;
15 r �  r h ;
16 for � 2 � 1 do
17 s  sc;
18 r c  0;
19 while s is not terminaldo
20 // Perform forward rollout of�
21 s0  M T (s; � (s)) ;
22 r c  r c + R(s; � (s); s0);
23 s  s0;

24 if r c > r � then r c  r � ; � c  � ;

25 feedback “If you perform f describeaction(� h )g, you
will fail the task in statef describestate(sh;terminal )g
because off describereward(diff(Rh ; R� ))g”;

26 return feedback

IV. EXPERIMENTAL VALIDATION

To quantify the viability and effectiveness of RARE within
a live human-robot collaboration, we conducted a user study
wherein participants had to solve a complex collaborative puz-
zle game – a color-based variant of Sudoku – collaboratively
with a Rethink Robotics Sawyer manufacturing robot. In the
sections that follow, we present results characterizing par-
ticipants' perception of a RARE-enabled robot that provides
guidance during complex collaborations to prevent task failure.
Failure prevention was attempted by the robot by means of ver-
bal interruptions taking place between the human's selection
of a color to play and the human's placement of that color.
Additionally, we investigate the role that justi�cation plays
when providing advice that directly alters the collaborator's
understanding of the game.

Participants were recruited into one of two treatments that

determined what the robot would communicate when inter-
rupting a human who is about to play a move that leads
to failure: a failure identi�cation-only condition (`control')
where future failures are identi�ed but not explained, and an
experimental condition (`justi�cation') where future failures
are both identi�ed and explained to the collaborator. Partici-
pants were assigned to a third, implicit baseline condition (`no
interruption') when no failures were detected and the robot did
not interrupt the game.

A. Hypotheses

We conducted a human-subjects study to investigate the
following hypotheses regarding RARE's application within a
live human-robot collaborative puzzle-solving task:

� H1: Participants will �nd the robot more helpful and
useful when it explains why a failure may occur (i.e.,
participants in the `justi�cation' condition will �nd the
robot to be more helpful than in `no interruption' condi-
tion and control condition.

� H2: Participants will �nd the robot to be more intelligent
when it gives justi�cations for its actions as compared to
the other conditions.

� H3: Participants will �nd the robot more sociable when it
provides justi�cations for its failure mitigation than when
it doesn't.

B. Experiment Design

To evaluate our hypotheses, we conducted a between-
subjects user study using a color-based collaborative Sudoku
variant played on a table with a grid overlay using colored
toy blocks. Study participants were assigned into one of three
conditions:

� Control : The robot interrupts users that are about to make
erroneous block placements, indicating to them that it will
cause task failure.

� Justi�cation : The robot interrupts users about to make
erroneous block placements, indicating that it will cause
task failure and explaining which game constraint will
inevitably be violated.

� No Interruption : An implicit condition for participants
that do not commit any errors and experience interrup-
tions by the robot.

During the game, participants place blocks concurrently
with the robot (i.e., without turn-taking), until the board is
�lled. Participants were required to place blocks successively
in the grid cells most proximal to themselves, enforcing that
the �nal row for both human and robot were adjacent (the
middle of the board). As in Sudoku, certain blocks were pre-
placed on the board to limit the solution space of the task.

The robot was pre-trained on all possible solutions for
the game board, making it an expert on the task. Human
participants were not exposed to the board before beginning
the task, and as such could be considered novices trying to
solve the game online — making them susceptible to errors.
During gameplay, the robot is able to verbally interrupt the
human player before they place a block that will make the
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