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Abstract—Exploration and self-directed learning are valuable
components of early childhood development. This often comes
at an unacceptable safety trade-off, as infants and toddlers
are especially at risk from environmental hazards that may
fundamentally limit their ability to interact with and explore
their environments. In this work we address this risk through the
incorporation of a caregiver robot, and present a model allowing
it to autonomously adapt its environment to minimize danger
for other (novice) agents in its vicinity. Through an approach
focusing on action prediction strategies for agents with unknown
goals, we create a model capable of using expert demonstrations
to learn typical behaviors for a multitude of tasks. We then
apply this model to predict likely agent behaviors and identify
regions of risk within this action space. Our contribution uses this
information to prioritize and execute risk mitigating behaviors,
manipulating and adapting the environment to minimize the
potential harm the novice is likely to encounter. We conclude with
an evaluation using multiple agents of varying goal-directedness,
comparing agents’ self-interested performance in scenarios with
and without the assistance of a caregiver incorporating our
model. Our experiments yield promising results, with assisted
agents incurring less damage, interacting longer, and exploring
their environments more completely than unassisted agents.

I. INTRODUCTION

Caregiver-guided and free exploration activities are known
to be an important part of development. It has been shown
that the interpretation of goal-directed spatial behavior as
intentional action can begin as early as 12 months [1],
suggesting that caregiver behaviors may impart high-level
information to infants. The same study shows 12-month-olds
to be even capable of evaluating an action’s rationality in
limited circumstances, indicating a preliminary understanding
of goal-directed behaviors. Particularly for children between
one and two years of age, exploratory activity is critical to
development [3].

Earlier work in examining exploratory behaviors of infants
and toddlers has shown there to be direct correlations between
these behaviors and problem-solving ability [2]. At 12 months
of age, studies indicate that a greater breadth of exploratory
behavior, when faced with novel objects (toys), was linked
to both an increased quantity of behavior as well as more
successful and sophisticated problem-solving ability. These
connections continue into toddler years, as others [3] have
shown that exploratory style at 19 months of age is predictive

of typical vs. delayed developmental level (measured by
pretend play level and performance of meaningful actions) at
30 months, painting a more complete picture of developing
competence (effective adaptation).

Two-year-olds inherently include social interactions in their
exploratory behaviors, learning about the world around them.
For example, the presence of a toddler’s mother during a novel
exploration task is known to elicit social behaviors, creating
active and passive bids for involvement and support of action
during exploration. Children that make more bids to their
mothers during exploration do so more actively than those
that do not [4], [5]. This suggests that a trusted caregiver may
be able to encourage deeper and more plentiful interactions.

Toddlers commonly encounter issues where goal-directed
exploration and learning is limited by the presence of envi-
ronmental hazards. Situations can occur in which a caregiver
might wish a toddler to learn to avoid a particular action (e.g.,
touching a hot stove-top) without the toddler experiencing
the environmental punishment for doing so (e.g., receiving
a painful burn). Another common scenario may involve dis-
couraging a child from exploring or playing near stairs or
other falling hazards, without him directly experiencing the
potential negative consequences of interacting in such an area.
The trauma from experiencing such hazardous events can
have lasting developmental effects, persisting even through
adulthood [6].

In this work, we propose a novel shaping mechanism by
which a robot can reduce a novel agent’s inherent risk during
exploration within an environment. Our proposed method ac-
complishes this without sacrificing the quality of the learning
experience, producing behavior for an assistive robot that can
autonomously adapt a novice agent’s environment to reduce
the risk of damage to themselves or to objects nearby. To do
so, this robot must monitor the behavior of the person, predict
intended goals, and take non-invasive, preventative measures
to ensure the exploring agent’s safety.

We accomplish this without any direct communication, as
all information is implicitly conveyed through manipulations
to, and exploration within, the environment. This allows for
the application of our contribution to agents of unknown ca-
pabilities and with agents incapable of direct communication.



As an example, if the person is at risk of collision with any
objects, those objects should be protected accordingly (perhaps
by placing a barrier around them or temporarily relocating
them somewhere safer).

To this end, we extend previous work on how to au-
tonomously give advice to an agent that may be lost, may be
exploring its surroundings, or may have a suboptimal policy
[7]. Drawing on these ideas, we present a model allowing
an assistant or caregiver observing the environment to learn
a model of normal behaviors from successful trajectories
through the space. Deciding if a new agent moving through
the environment needs assistance is then a form of anomaly
detection, by determining how well that new agent fits the
behavior predicted by the model.

This assistance must take the form of changes to the
environment, such as moving a fragile or hazardous object
to a less risk-prone area or adding a temporary barrier to that
area, to remain minimally invasive. This indirect assistance
is offered in opposition to more traditional modes of direct
assistance that use physical manipulation, where the assistant’s
action policy is imposed [8] (for instance, by being led by the
hand through a task). Our approach includes the generation
and evaluation of indirect assistance as a means of maximizing
the safety of fellow agents in an environment.

Such indirect interventions are not without precedent in
the robotics or machine learning literature. The benefit of
interactive shaping, the practice of providing targeted feedback
to manipulate portions of an agent’s policy to facilitate goal
achievement, is well established [9], [10], [11]. While the
ability of an agent to interpret and respond to live feedback
or to freely explore a task space can greatly improve the
convergence rate of its action policy, there exist many cases
where catastrophic failures may occur. In our chosen domain,
these failures are unacceptable to use as learning opportunities
as they may result in disasterous injury.

Accordingly, we model a novice agent’s risk with the
expectation of perturbation from typically observed behaviors
derived from expert demonstrations. Our approach accom-
plishes this by probabilistically merging collections of task-
based risk models, and choosing environmental manipulations
in order to minimize the expected risk given the potential
execution policies of the agent.

The lack of direct communication between novice and care-
giver introduces the requirement of estimating the probability
that an agent is behaving safely based on its trajectory. The
assistant may then adapt the environment to mitigate the
risks inherent to the nearest danger zones. We demonstrate
the utility of our approach by evaluating its effectiveness
at providing a safe interaction environment for agents with
uncertain or suboptimal navigation policies and behaviors.

In the following section we introduce term definitions
and necessary background information. We then describe our
process of building models to assess safety and risk given col-
lections of expert demonstrations for a variety of tasks. Finally,
we conclude with an evaluation within a simulated online risk
mitigation domain, validating our approach through various

metrics related to safe exploration and goal achievement for
agents of varying levels of goal-directedness.

II. PRELIMINARIES

Throughout the remainder of this paper, we employ the
following terminology. The novice is moving around the envi-
ronment, the caregiver watches the behavior of the novice and
adapts the environment, and objects are regions with which the
novice can collide. Such a collision causes damage, which can
be treated as a negative reward in the context of reinforcement
learning. To prevent damage, the caregiver manipulates the
environment such that the novice still negatively reinforces
undesirable behaviors but without incurring the full damage
that such a behavior may have otherwise inflicted.

Let an environment be specified by a set of states S, and
the actions available to an agent are drawn from a set A. An
agent in a state s ∈ S can select an action a ∈ A, after
which the agent transitions to another state s′ ∈ S according
to a probability distribution given by the transition function
T (s, a, s′). This transition results in a reward given by the
reward function R(s, a). The motion of an agent through the
environment is thus given by the Markov decision process
(MDP) (S,A, T,R) [12].

A decision rule for probabilistically (or deterministically)
selecting actions as a function of state is a policy π : S×A −→
[0, 1]. An optimal policy π∗ is the policy which maximises
total reward from every state of the MDP.

Action priors [13] are a recently proposed mechanism for
learning models of behavior in a common domain across
multiple tasks. These involve maintaining distributions over
the action set for each state, corresponding to the number of
known optimal policies that select each action at that state.
Particularly for domains in which goals cannot be or are not
fully specified, we include in our set of optimal policies the set
of ‘best known’ policies for a given task. This provides a basis
for learning goals from inverse reinforcement learning [14]
approaches, where expert demonstrations can train a reward
function in lieu of a specified goal state descriptor.

As such, for each state s in the environment, the action prior
θs(a) is computed from αs(a), the number of optimal policies
π in the set of all such policies Π in which a is taken in s
with probability greater than some threshold δ. Thus,

αs(a) = ‖{π ∈ Π|π(s, a) > δ}‖+ α0
s(a),

where ‖{·}‖ represents the size of a set, and α0
s(a) is a

hyperprior used to prevent overfitting [13], by allowing for
that fact that the training policy set Π may not be fully
representative of the set of all behaviors in the environment.

The action priors are then typically computed as a draw
from a Dirichlet distribution θs(A) ∼ Dir(αs(A)). This state-
based distribution over the action set assigns probability to
each action based on the number of tasks for which that
state-action combination was optimal. This therefore provides
a model of optimal behavior in the environment, aggregated
across all tasks.



III. A MODEL OF SAFETY

We approach the problem of facilitating safe learning and
exploration initially as that of anomaly detection. Given a
model of safe interaction, described by the set of MDP
reward functions within known tasks and encapsulated as
action priors, we compare observed agent behaviors to these
known policies. This model construction is particularly robust
as it makes determinations independent of an agent’s goals,
perceptual capabilities, or assumed knowledge of the world.
By using such an approach, we also avoid the pitfall of relying
on constructing models of unsafe interaction, which may not
be feasible or reasonable to construct.

We would like to compute the probability that the trajectory
was drawn from a model of abnormal or risky behavior,
but to learn such a model one would need examples of this
(which is undesirable from the point of view of both the agent
and the environment). Instead we compute the probability of
the trajectory having been drawn from a model of normal
behavior, P (trajectory|model), which is something that can
be learned from experience.

Our model requires computing the probability that a novice
agent is behaving safely. Let the trajectory taken by the novice
thus far be represented by an alternating state and action
sequence, as

τ = st+1, at, st, at−1, st−1, . . . .

We compute the probability that a novice is behaving safely
by the probability that the trajectory followed by the novice
was drawn from a model of normal motion in the environment,
as modelled by the action priors. By Bayes’ rule, this is given
by

P (safe|τ) =
P (τ |safe)P (safe)

P (τ)
(1)

=

∏t
k=1 θsk(ak)P (safe)∏t

k=1 θsk(ak)P (safe) +
∏t

k=1 ρsk(ak)(1− P (safe))

where P (safe) is the prior belief that the agent is choosing
a safe action at each timestep, and ρsk(ak) is an action
distribution for an unsafe agent.

As we do not know a priori the model of unsafe behavior
and are unable to collect this data, we choose to represent this
model as one where every action is assumed to occur with
equal probability. A richer model of goal likelihoods could
improve upon this, however doing so imposes requirements of
deep domain knowledge and rich observation on the caregiver
to collect or use such data. As such, in our experiments we let
ρs(a) = 1/|A|, ∀s ∈ S, a ∈ A. Furthermore, without a priori
knowledge, we assume a uniform prior over the probability of
the agent behaving safely, and let P (safe) = 0.5.

IV. A MODEL OF DANGER

Having computed a probabilistic estimate of how unsafe the
behavior of a novice agent is given a model of expert motion,
the caregiver is required to modify the environment to enhance
the safety of the agent.

Damage is caused by a collision between an agent and any
of a number of objects in the environment. The caregiver must
therefore estimate which object poses the greatest risk to the
novice. To do so, it computes the expected damage caused by a
collision with each object o. This is determined as the damage
that would be caused by a collision between the novice and
that object, weighted by the probability of that collision, as

E(do|τ) = P (collision|τ)× do
= (1− P (safe|τ))× P (reacho|τ)× do

where E(do|τ) is the expected damage that could be caused by
a collision with object o given the current trajectory τ of the
novice, P (safe|τ) is the probability of the novice behaving
safely as given by Equation (1), P (reacho|τ) is the probability
the novice reaches and collides with o, and do is the extrinsic
cost of the damage caused by such a collision. As a proxy for
P (reacho|τ), we represent this quantity by the normalised
distance of the agent from o. This provides an estimate of the
number of timesteps that would be required for the novice
agent to reach and collide with the object from its current
position.

The damage cost do is extrinsically defined, and associated
with different items in the environment based on the danger
that a collision with an agent may pose to either the agent or
the object. We compute an expected intrinsic cost to the agent,
based on the distance of the agent from that object, as well as
the estimated probability of a collision.

The caregiver must follow an action policy balancing these
costs, subtracting the cost of a particular danger mitigation
strategy from the potential harm. We consider the cost to
mitigate risk as being proportional to the time required for
the caregiver to perform the environmental modification.

V. EXPERIMENTS

We validate our approach in an experiment simulating
a toddler (novice agent) exploring a household domain. In
each goal-directed episode the novice agent is attempting
to navigate to a sequence of randomly selected toy bins
within the environment. In addition to walls and toy bins,
this environment contains several hazards, some mobile and
others immobile. Hazards which may not be moved include
stairwells and tables, while those that can be relocated are
candles that sit upon tables. We explore the behavior of our
caregiver robot by examining its interactions with different
novice agent types, varying the novice’s goal-directedness via
exploration likelihood, as they interact with the environment
and perform various navigational tasks (in the form of toy
retrievals).

A. Environment

Our experiment utilizes an environment characterized by a
house’s floor plan, discretized into a 2D grid world. Apart
from walls and free space, the environment has five types of
objects: candles on tables which may start fires if collided with
(major damage), walls and tables which may be bumped into
(minor damage), stairs that the agent may fall down (major



Fig. 1. The map used in the experiments. The environment consists of open
spaces, walls, staircases, tables, candles, and toy bins.

damage), toy bins that act as goal locations for the novice, and
the mobile caregiver robot. The domestic environment used in
the experiments is shown in Figure 1.

B. Novice Agent Behavior

Novice agents are initialized at a random start location with
knowledge of all toy bin (goal) locations, though the rest of
the environment is unknown. Without a goal, a novice will
randomly choose a goal destination from the list of known
toy bins. When a goal has been selected, the novice agent will
follow an ε−greedy policy to achieve it before selecting a new
goal, meaning it will take an optimal action ε% of the time and
a random action (1− ε)% of the time. In our simulation, we
allow novices to ‘play’ for a maximum of 200 timesteps, with
each timestep corresponding to the time required to move one
grid square in the environment. The action set for these agents
is limited to 4-connected movement within the environment.
Collisions with objects or walls result in the agent staying
in place and incurring a penalty. The amount of damage is
extrinsically defined as being 5 for a collision with a stairwell,
4 for a collision with a candle, and 1 for a collision with an
empty table. Collisions with walls or toy bins do not incur any
damage.

C. Caregiver Training and Behavior

The model of normalcy we utilize is developed from a
number of expert trajectories of an optimal agent moving
through the room. The expert trajectories take the form of
collision-free, shortest-path routes from various start locations
to each of the specified goal locations (toy bins). These optimal
policies provide the action priors required to inform the risk
mitigation strategy of the caregiver. Our evaluation simulates
a caregiver robot that executes up to 3 actions for each 1 of
the agent, assuming a movement speed ratio similar to that of
healthy adult humans (5.0 km/h) [15] to healthy 1-2 year olds

(1.6km/h) [16]. The action set for the caregiver consisted of 7
actions: 4-connected grid movement operations, a wait action,
a get-object action, and a place-object action.

There are two intervention strategies which can be employed
by the caregiver. Firstly, it is able to pick a candle up off a
table, and move it to another. Secondly, the caregiver may wait
in a stairwell, which blocks the toddler from accessing it and
subsequently incurring a large amount of damage.

D. Evaluation Criteria

The performance of our algorithm is characterized by the
average damage incurred by a novice agent over the course of
its interactions (Figure 2 and Table I), the number of timesteps
elapsed before the novice reached a critical damage threshold
that terminates the simulation episode (Figure 3 and Table II),
and the amount of environmental coverage the agent was able
to achieve during exploration (Figure 4 and Table III). As the
goal of our algorithm is to actively mitigate and minimize
the risks inherent to interaction and exploration in a novel
environment, the average incurred harm is an essential metric
to track. We are also interested in examining how much time
the novice is able to use for exploration/task execution in
the environment before it is forced to stop as a result of
accumulating too much damage. This is related to our final
metric, the amount of environment coverage that the novice
achieved (equivalent to environmental knowledge gained) that
can be used to better inform its navigation and other relevant
interactions in that space.

The results reported in this section are all averaged over
20 runs (episodes) each of the novice agent interacting in
the environment both with and without the caregiver robot
present. As the values we present will change with different
environments, objects, and damage definitions, we identify the
trends of the results as being more important than the particular
values themselves.

E. Results

Our results show definitive and tangible benefits achieved
by the risk mitigation algorithms proposed within our work.
Novice agents with caregivers present received less damage
from the environment (Figure 2), spent more time interacting
(Figure 3), and explored more of the environment before
receiving a critical amount of damage (Figure 4).

In Figure 2, we evaluate the average damage incurred by
the novice over each of its interaction episodes, lasting 200
timesteps. It is expected that an agent with higher exploration
rates will encounter more harmful areas of the environment,
and as such experience more damage. The inclusion of our
caregiver agent generally reduces this incurred damage by
over 66%, performing mitigation strategies informed by known
optimal behaviors and predicted deviations.

While each episode lasted 200 timesteps, it was also
recorded when an agent sustained above a critical threshold
of damage (corresponding to 15, or 3 times the damage of
a staircase collision). We examine the number of timesteps
the agent is able to complete, before either sustaining too



Fig. 2. The average normalised damage (negative reward) accumulated by
novice agents of various levels of goal-directedness, both with and without
the assistance of a caregiver robot. Error bars represent one standard deviation
from the mean. A value of 1.0 on this graph corresponds to the maximum
damage received in a single episode across all agent types and conditions.
Novices followed an ε-greedy policy to their goal, determining the frequency
of choosing optimal or random exploratory actions.

Agent No caregiver With caregiver
random motion 0.7346 0.2291
75% random 0.5295 0.1438
50% random 0.2846 0.1106
25% random 0.1887 0.0466
5% random 0.0565 0.0072

TABLE I
MEAN NORMALIZED DAMAGE (NEGATIVE REWARD) ACCRUED BY

VARIOUS NOVICE AGENTS WITH AND WITHOUT CAREGIVER
INTERVENTION

much damage to continue or reaching the end of the episode
(fixed at 200 steps) in Figure 3. Understandably, less goal-
directed novice agents are more prone to encountering harmful
objects in the environment. On average, fully random and
75%-random agents without caregiver assistance do not even
complete a quarter of the episode before sustaining critical
damage. Unassisted agents with ε-greedy strategies of 50%
and 25% often only complete half of the episode. Even with
a 5% exploration rate, the agent in the non-caregiver condi-
tion does not always complete the episode before sustaining
critical damage, illustrating the danger inherent within the test
scenario environment.

When we introduce and train our proposed caregiver agent,
the number of timesteps before sustaining critical damage
improves substantially. The caregiver mitigates risk even in the
fully random novice, an agent entirely without goal directed
motion, by doubling the number of actions taken prior to
episode termination. Goal directed novices experience even
more dramatic improvements, with 75%-random and 50%-
random agents completing over 150 of the 200 possible
timesteps on average, with many of them completing the
entire episode without receiving critical damage. For 25%-
random and 5%-random agents the caregiver robot was able
to ensure every episode ran to completion, with no agents

Fig. 3. The average number of timesteps (maximum 200) before the novice
agent incurred damage above the stoppage threshold. Error bars represent
one standard deviation from the mean. Values of 200 indicate that the
agent completed the entire interaction without incurring damage above the
termination threshold.

Agent No caregiver With caregiver
random motion 35.5000 97.0500
75% random 41.0500 164.2000
50% random 89.5000 171.5000
25% random 107.7000 200.0000
5% random 195.7500 200.0000

TABLE II
AVERAGE NUMBER OF TIMESTEPS UNTIL THRESHOLD DAMAGE WITH AND

WITHOUT CAREGIVER INTERVENTION

having their interaction terminated early. These results are
indicative of the clear benefits afforded by the caregiver’s
control policy, achieved through accurate safety prioritization
and action prediction.

Finally, we examined the overall environment coverage
achieved by the various novices prior to reaching the damage
threshold (Figure 4). It is fairly straightforward to expect that a
weakly goal-directed agent (one with a high exploration rate)
that is able to spend more time interacting in the environment
will likely cover more ground than a strongly goal directed or
temporally limited agent. Accordingly, we observe coverage
that varies in proportion to both the exploration rate and
episode duration.

In the non-caregiver condition, the entirely random novice
agent covers fewer than 15 cells on average, with the 75%-
random agent not faring much better. The 50%-random agents,
using nearly double the actions on average to explore before
sustaining critical damage, achieve approximately double the
environment coverage as their less directed counterparts. Fi-
nally, the 25%-random and 5%-random agents perform best,
reaching nearly 35 states on average.

When interacting in an environment with the caregiver
robot, the novices generally outperform their solo counterparts
with only the 5%-random agent having similar results (largely



Fig. 4. The average number of unique grid cells the novice visited per
episode. Error bars represent one standard deviation from the mean. The
number of cells visited is used as a metric to evaluate the amount of
environmental knowledge gained by the novice agent over the course of an
episode (up to 200 timesteps).

Agent No caregiver With caregiver
random motion 14.6000 24.4500
75% random 16.8500 36.4500
50% random 29.7500 38.4500
25% random 34.1000 38.7000
5% random 34.7000 33.2000

TABLE III
AVERAGE NUMBER OF CELLS EXPLORED WITH AND WITHOUT CAREGIVER

INTERVENTION

due to its limited deviation from an optimal trajectory). This
coverage increase is directly attributable to the increased
duration of exploration available to the agent. We include these
results to provide a concrete measure of the realized benefit
from having the additional time for environmental exploration
and interaction. We show that not only does the caregiver
robot provide a safer environment, but this risk mitigation
results in actual increases in environmental exploration, and
subsequently potential increases in the agent’s experience
diversity and its awareness of its surroundings.

VI. DISCUSSION AND CONCLUSION

We present a model usable by a caregiver agent to assist
novice agents through the reduction of danger inherent in an
environment. We accomplish this through the utilization of
expert demonstrations to learn regular behaviors for multiple
tasks within an environment. From this data we create a
model of normal behaviors, using it to enable an autonomous
agent to mitigate the highest-risk scenarios the agent it’s
assisting is predicted to encounter. In doing so we show
how an environment can be adapted online to respond to the
assisted agent’s behaviors and goals in the absence of directly
communicated information specific to the agent’s intent.

Our results show that our approach is effective in reducing
harm experienced by a novice agent interacting in the same
environment as the caregiver. This manifested other important

benefits, including increased interaction and exploration time
(prior to receiving a critical amount of damage) as well as
increased coverage of the environment. The trends within our
data demonstrate the value of such a caregiver, particularly due
to its lack of reliance on direct communication or knowledge
about a specific agent.

Providing a means of autonomously adapting an environ-
ment for a novice agent to make exploration less risk-prone is
valuable within many contexts. In addition to mitigating risk
for developing humans, the same approach can be used to
assist robots learning tasks within an environment. The same
benefits persist, as a robot that is able to perform more itera-
tions of an action or explore the action space more completely
without damaging itself would be expected to achieve better
task proficiency than one without these advantages.

In future work we wish to explore different ways in which
the assistant may help an agent perform a task on a more
general class of problems, generalizing known expert policies
to novel tasks, environments, and agent configurations.
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