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Abstract— Effective robot collaborators that work with hu-
mans require an understanding of the underlying constraint
network of any joint task to be performed. Discovering this
network allows an agent to more effectively plan around co-
worker actions or unexpected changes in its environment. To
maximize the practicality of collaborative robots in real-world
scenarios, humans should not be assumed to have an abundance
of either time, patience, or prior insight into the underlying
structure of a task when relied upon to provide the training
required to impart proficiency and understanding. This work
introduces and experimentally validates two demonstration-
based active learning strategies that a robot can utilize to
accelerate context-free task comprehension. These strategies are
derived from the action-space graph, a dual representation of a
Semi-Markov Decision Process graph that acts as a constraint
network and informs query generation. We present a pilot study
showcasing the effectiveness of these active learning algorithms
across three representative classes of task structure. Our results
show an increased effectiveness of active learning when utilizing
feature-based query strategies, especially in multi-instructor
scenarios, achieving better task comprehension from a relatively
small quantity of training demonstrations. We further validate
our results by creating virtual instructors from a model of our
pilot study participants, and applying it to a set of 12 more
complex, real world food preparation tasks with similar results.

I. INTRODUCTION

For the vast majority of situations, it is unreasonable to
assume that a robot can be deployed in an environment
carrying the full knowledge required to adequately perform
its duties. As a motivating example, consider a household
robot that is tasked with assisting a human with cooking
duties. The preparation and treatment of each ingredient type
likely requires its own trained skill (e.g., mashing potatoes
vs. kneading dough). It would be impossible to precompute
all possible skills required for a robot to have proficiency
across all food preparation tasks, and equally difficult to
develop objective functions enabling a robot to practically
learn these skills on its own. Requiring a robotics expert to
provide new programming for each shift in responsibilities,
process, or task is often prohibitively expensive from both
a temporal and monetary perspective. Further, it cannot be
reasonably expected that the programmer will be a subject-
matter expert for the target domain, resulting in the difficult
situation of attempting to translate an expert’s knowledge and
learned heuristics into code.

To overcome this difficulty, Learning from Demonstration
(LfD) has been developed and validated as both a popular
and effective mechanism to afford non-experts the ability to
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Fig. 1. Collaborative Workbench platform with experimental setup, used
to learn task structure from demonstrations of construction activities.

easily impart new task and skill knowledge to robots [1],
[3]. The ultimate goal of LfD research is to build systems
capable of learning and generalizing tasks from naturally
demonstrated examples by non-technical users. While many
methods of skill learning can perform quite well and are con-
sidered feasible even when requiring thousands of simulated
trials to converge on a proficient skill policy [24], it is clear
that the applicability of LfD will be severely limited by such
large training set requirements. It would be an unwise design
decision to assume a human is willing or able to demonstrate
dozens of executions of each possible cooking task for the
sake of training a robot.

Building more capable, intuitively trainable robots is a
vital step towards transitioning them from isolated, indepen-
dent workers to capable, safe, efficient collaborators. To facil-
itate this transition, the robotics community must collectively
overcome a broad variety of challenges spanning the domains
of skill acquisition, implicit and explicit communication [4],
[22], solo and joint task understanding, and collaborative
execution [11], [12].

When seeking to integrate collaborative robots into com-
plex roles with non-trivial responsibilities, developing team-
oriented behaviors becomes increasingly important. To this
end, researchers have developed planning algorithms that,
given the constraints of a task, allow for rapid planning
and ideal resource allocation [21], [23]. As robots become
more integrated into human environments, it will be equally
important to develop mechanisms by which a robot can lever-
age task structure comphrension to synchronize its execution
preferences with the expectations of its teammates [14], [18]
and incorporate LfD-based skills into high-level planning
systems such as Hierarchical Task Networks [17], [19].



Enabling these behaviors is contingent upon the agent
having an understanding of the effects its actions have on
the world. Skills acquired via LfD do not always have this
knowledge accessible via the necessary symbolic formaliza-
tion, as generating it requires considerable sensing or inten-
tion recognition abilities [16]. These effects can be dealt with
indirectly, as skills may be viewed merely as functions acting
on the environment, producing a new environment state given
an existing one. Thus, learning which compositions of these
functions are valid allows the agent to plan and act without
direct symbolic representations of each component skill [15].
The problem of discovering these valid sets of compositions
is equivalent to learning the constraint network for a given
task.

In this work, we address the problem of a robot (Figure
1) learning the constraint network of a task through the
observation of human instructors. Learning task structure
in this manner can require a large set of demonstrations
to achieve a sufficient amount of training diversity. If an
instructor behaves habitually and does not produce novel
demonstrations, very little new structural information can
be acquired per training session and no new constraints
will be learned/removed. As an example, if an instructor
were teaching a robot about salad preparation but only
ever chopped carrots before chopping celery, the robot will
learn an artificial constraint indicating that carrot preparation
must occur prior to celery preparation in this task. Further
complicating matters, instructors are expected to properly
modulate the diversity of each demonstration to the learner,
maintaining responsibility for maximizing learning gains at
each step. To mitigate these issues, a robot can leverage its
embodiment to participate in the learning process, asking the
instructor questions that seek to maximize its learning gains.
This process, called Active Learning, has been shown to be
effective in LfD domains [7].

Our work offers the following contributions:
• Two graph feature-based active learning query genera-

tion algorithms that significantly outperform a standard
exploration function in constraint learning.

• A pilot study indicating how different active learning
query strategies affect the learning of three representa-
tive classes of task constraint networks.

• An examination of the effects of drawing demonstra-
tions from multiple instructors on learning task struc-
ture.

• An experiment showing that better training data may be
obtained by optimizing for inspiring diverse instruction
from a small group of instructors rather than extensive
training from a single instructor.

II. APPROACH

To accomplish this, we use a graph transformation function
that is applicable to the commonly used [2], [10], [9], [13]
Semi-Markov Decision Process (SMDP) [20] task represen-
tation. The resulting SMDP dual graph (figure 2), hereafter
referred to as the action-space graph, affords advantages
to a robot learner in terms of expediting task structure

comprehension. We show that the action-space graph can
be used within the context of active learning to achieve
accelerated understanding of a complex task structure given
a realistic and limited set of demonstrations and instructors.
We focus particularly on learning a constraint network for
each task, indicating acceptable skill sequences to reach goal
states for the activity. In doing so we remove the need for
complex intention recognition or symbolic formalization of
skills, making this approach particularly accessible to LfD-
based systems with minimal high-level sensing requirements.

We focus especially on the domain of tasks and environ-
ments where instructor availability is limited (low demon-
stration count), human-robot communication is heavily con-
strained (no explicit communication from human to robot),
and collaboration with other trusted robot instructors is
limited or unavailable (low collaborator count). We maintain
these very conservative restrictions in an effort to remain
relevant to a maximally diverse range of collaborative robots.

III. LEARNING ENVIRONMENT

A. Task Learning Domain

This work focuses on using active learning and LfD to
discern the underlying structure of a task without context.
We represent a task SMDP using standard graphical notation
G = {V,E}. We define an observed task execution x as a
simple directed graph with membership in the set X consist-
ing of all valid task execution graphs. Thus, x = {Vx, Ex} ∈
X describes a single path through a set of vertices in V
representing environment states linked by edges labeled with
known, executed actions, terminating in a vertex describing a
goal state (terminal vertex). We define a task as the weakly
connected directed multigraph T = {V,

⋃|X|
i=1 edges(xi) ∈

X}, describing a Semi-Markov Decision Process. A vertex
in this graph is labeled with information representing the
state of the environment, while directed edges connecting
environment states are labeled with actions that must be
performed to transition between them. This typical SMDP
representation is subsequently referred to as an Environment-
space Graph (Figure 2—top).

Formally, the task structure discovery problem can be for-
mulated as one of graph exploration. The learner is presented
with an ever-growing library of observations L of successful
skill execution sequences (l ∈ L =⇒ l ∈ X), successively
gaining more insight into the task being performed as novel
elements are added. Certain paths through the graph are more
valuable than others, as a demonstration primarily serves to
reveal new vertices and edges. As such, a learner is motivated
to encourage an instructor to provide the most informative
path per demonstration, desiring the instructor to show a
demonstration x according to

argmax
x∈X

|unique edges(L ∪ x)|

B. Multi-Instructor Task Learning Domain

As robots become increasingly ubiquitous, the availabil-
ity and magnitude of potential gains from distributed task
learning across multiple instructors increases.



Fig. 2. Visualization of graph transforms on an everyday task. For this
task, the knife must be acquired prior to chopping, though the order that
the carrots or celery is chopped does not matter.

It is likely there will be a substantial overlap of training
needs across collaborative robots. Across every robot trained
in an instance of the general cooking task, some subsets of
them will be trained for the same particular instantiations
of the activity. Leveraging the data from these instructors
with similar robots, environments, and task demands can
be mutually beneficial, but also potentially dangerous if the
shared data is invalid or maliciously constructed. For this
reason, even as robots become commonplace in many task
domains and the amount of relevant collaborators increases,
it may not be a safe assumption that all others’ training
data should be implicitly trusted. This reinforces the need to
expect situations in which there may be limited numbers of
available collaborators. We define the multi-instructor task
learning domain as m independent instances of the task
learning domain whose observation libraries L1, L2, ..., Lm

can be joined and re-distributed to each participating in-
structor, leveraging not only additional demonstrations, but
benefitting from the diversity inherent to multiple teaching
styles. In our work, this step occurs subsequent to all training
activity to avoid the assumption that collaborator data was
available during the initial training of a task.

C. Activity Description

Our work focuses on learning the underlying structure of
a collection of representative construction tasks. These tasks
are defined through ordering and prerequisite conditions on
a set of eight uniquely colored interlocking blocks (Figure
1). Block construction tasks were chosen as they can be
flexibly or rigidly defined and will not bias participants
towards particular demonstrations in a way that tasks involv-
ing familiar objects might. Participants were only permitted
to construct from the bottom up in their demonstrations,
resulting in a total possible task space of 40320 block usage
sequences. The three representative tasks chosen to test our

active learner query algorithms are drawn from three distinct
structural compositions (Figure 3).

D. Workspace

The workspace for performing tasks on the Collabora-
tive Workbench contained one KUKA YouBot arm, eight
uniquely colored building blocks, a piece of paper with task
descriptions, and a tablet computer (Figure 1). The leftmost
YouBot arm was not utilized for this experiment. Each of the
eight blocks had a labeled place-card designating its home
position affixed to the table within range of the arm (the
“resource area”). The tablet, placed next to the resource area,
presented an interface with buttons corresponding to each of
the blocks on the table. The area immediately in front of
the participant was informally designated as the construction
area. The paper with task descriptions and reference images
was placed just left of the construction area.

IV. LEARNING SYSTEM

A typical passive learner would gain knowledge about
the structure of a task by observing performances of it.
Duplicate observations would not provide new insight into
the underlying structure, though they may be helpful for
determining user preferences or reasoning about commonly
occurring orderings. This method, while non-intrusive, can
be inefficient if the provided training data is not suitably
diverse. One practical method of overcoming this challenge
is to participate in the learning process.

A. Active Learning

In the general case, Active Learning involves a learner
generating or selecting examples to be labeled by an oracle.
With a means to participate in the instruction process, a
learner is capable of increasing the effectiveness of the
tutoring process if she can guide an instructor to provide
and label useful examples specific to her current internal
state [6], [8].

Within the task learning domain, useful examples are
those which inform the learner about previously unknown
constraints between the components of a task. When learning
task structure, active learning provides a mechanism by
which a learner can suggest a potential edge from the
environment-space graph via a demonstration query, implic-
itly specifying the originating vertex (current environment
state) and explicitly providing a skill label (the query itself).
For example, a robot may ask a human chef if the flour can
be added after adding butter in a cookie recipe. In doing so,
the learner is requesting the oracle to reveal an edge leading
from a vertex containing the current state of the food to a
nearly identical vertex where the flour has been added. An
instructor can respond to this query positively by utilizing the
suggested skill and adding flour, or negatively by performing
a different skill such as adding sugar instead.

While a negative response does not necessarily indicate
that no edge with the queried label exists from the current
environment state, it does suggest that it is unlikely. A
particular edge that is known or confidently assumed to not



exist can be labeled as an anti-edge in the environment-
space graph, informing the learner that he should assume no
transition is possible matching that particular environment
state/skill combination. Anti-edges serve an important role
within the task learning domain, as queries are a limited re-
source [5] and should not typically be used to test previously
ruled-out transitions.

As individual instructor habits and preferences can di-
minish task demonstration diversity, active learning provides
a mechanism by which a robot can safely participate in
the learning process, encouraging the presentation of varied
examples. We show that the process of solving the task
learning problem can be expedited with the assistance of an
intelligent strategy for encouraging demonstration diversity
through active learning, derived from the properties of the
action-space graph.

B. The Action-Space Graph

While the environment-space graph provides an easily
followed execution plan for an arbitrarily complex task,
it does not immediately convey features helpful for either
discerning task structure or informing an active learning
strategy to inspire useful demonstrations. To gain easily
interpreted features for satisfying these goals, we utilize the
action-space graph. Contrasted to the environment-centric
view of the standard graphical task representation, the action-
space graph provides a skill-centric overview of a task.

Given an environment graph G = {V,E}, we define the
action-space graph as a directed multigraph H = {W,F}
consisting of a unique set of vertices W = {label(e) | ∀e ∈
E, label(e) /∈W} and a set of edges F connecting vertices
in W with labels corresponding to prerequisite environment
features derived from the postconditions of previously exe-
cuted skills (Figure 2).

The action-space graph provides several benefits when
compared against the environment-space graph in the con-
text of selecting a skill for a demonstration query. Simple
features derived from a partially known action-space graph
such as skill distance and skill connectivity can be used to
beneficially inform an active learning query mechanism.

C. Query Strategies

For realistic training scenarios, it is important for an active
learner to utilize query opportunities as a scarce and valuable
resource, optimizing the value derived from each chance to
interact with the instructor. Posing too many queries can slow
down the training process and potentially cause the instructor
to reduce the number of demonstrations or even abandon the
training entirely.

As the goal in the task learning domain is to achieve
maximum diversity of training examples, the value of a
particular query becomes less obvious than merely evalu-
ating whether or not a particular skill can be performed
immediately given the current environment state. In some
cases, it may prove more valuable to inquire about a skill
that cannot be utilized immediately from the current state,
with the consequence that the instructor may demonstrate

a unique path from the current state to the queried skill.
We evaluate the effectiveness of three different active learner
query strategies: random, distance-based, and connectivity-
based.

1) Random Querying: The baseline mechanism that we
compare our strategies against is random selection. The
random query mechanism selects a skill at random from
the set of skills that have not been seen during the current
demonstration of the task. This set excludes the set of skills
for which direct transitions are known from the current state.
Additionally, the random query mechanism made use of anti-
edges, avoiding repetitive or uninformative queries.

2) Distance-based Querying: The distance-based query
obtains a distance score for each vertex in the action-space
graph (transformed from the learner’s current environment-
space graph), measuring the shortest path to each. This query
mechanism selects the closest skill that has neither been
executed nor describes an existing transition from the current
state in the environment-space graph. Transitions that are
eliminated by anti-edges are also ignored. Ties are broken
randomly.

3) Connectivity-based Querying: The connectivity-based
query utilizes the degree of each vertex in the action-space
graph and its edges’ constraint properties to rank potential
queries. Each inbound edge for a particular vertex is scored
inversely proportionally to the number of environmental
prerequisites on its label. For our experiment, we set a base
score for each edge equal to the total number of possible
prerequisites (obtainable by examining the inbound edge
constraints for the terminating vertex of an action-space
graph). Inbound edges were given scores of [base score −
prerequisite count], while outbound edges on a vertex were
scored at a flat value of half the base score. The score for a
vertex is defined as the sum of its inbound and outbound edge
scores. These values were chosen to prioritize well connected
vertices with minimal prerequisites. As in the distance-based
and random queries, skills that had already been executed
this iteration are not considered for selection. Anti-edges are
also utilized to avoid known negative queries. The resulting
demonstration query is chosen as the remaining skill with
the highest score. As in the distance-based query, ties are
broken by a skill being chosen randomly from the set of
best scoring results.

V. EXPERIMENT DESIGN

To explore the performance impact that each of the three
query strategies has on a robot utilizing active learning to
learn the structure of a task, we conducted a pilot study.
Participants were instructed to perform construction tasks
in front of the robot, with the expectation that the robot
will occasionally ask questions about the current activity.
The experiment involved each participant performing 42
demonstrations consisting of 14 examples for each of three
different tasks. There were four algorithmic conditions, in-
cluding one passive learning condition that did not query and
three active learning conditions: “Random query”, “Distance-
based query”, and “Connectivity-based query”. In querying



Fig. 3. Construction activity task hierarchies

conditions, the robot only posed open-ended, material-centric
demonstration queries. This took the form of a request to use
a particular material (building block) next.

For each active learning algorithm, the participant per-
formed each task in succession (task 1, then 2, then 3).
Tasks were demonstrated in an interleaved sequence to
provide a more naturalistic setting in which to evaluate task
instruction, as we seek to investigate a casually instructed
robot rather than one with a dedicated instructor expending
a concerted effort teaching it. Participants only completed
two performances of the task sequence for the “No query”
condition, as it was included to familiarize the participant
with the experimental procedure. Each of the three active
learning conditions involved the participant performing each
task four times.

A. Tasks

The first task incorporates a large group of order-agnostic
elements within a rigid ordering sequence, identifiable as a
chain containing a large clique. Participants were instructed
to construct a tower structure (Figure 3-top) with the con-
straints that the first block placed must be red, the last
block placed must be blue, and the order of the other blocks
{Yellow, Green, White, Red, Purple, Black} did not matter.
This task has 720 valid execution paths. Queries were made
after the first, third, and fifth steps of this task.

The second task is an order-invariant sequence of small
order-agnostic subtasks, a chain of cliques. Participants were
instructed to build a V-like structure (Figure 3-middle) from
the bottom up, one row at a time. The rows were (in
increasing order): {Red}, {Yellow, Blue, Purple}, {Green,
Black}, {White, Orange}. This task has 24 valid execution

paths. Queries were made after the first, third, and fifth steps
of this task.

The third task consists of an order-agnostic trio of order-
invariant subtasks, otherwise described as a clique of chains.
Participants were instructed to build three different towers
{Yellow, Green, White}, {Red, Blue}, {Purple, Black, Or-
ange} in any order, with the restriction that once a tower
is started it must be completed before beginning another
(Figure 3-bottom). This task could be completed via six
unique execution paths. Queries were made at the beginning
of this task, as well as after the second and fourth steps.

B. Procedure

For the duration of the experiment, the participant was
seated at the workbench in front of the robot. After being
briefed that he would be demonstrating a set of tasks for the
robot, the task descriptions were explained to him with the
opportunity to ask questions about the tasks to the experi-
menter. Participants had access throughout the experiment to
a description for each task that included a reference image.

Participants were motivated to complete each series of
tasks quickly in an effort to encourage natural demonstrations
rather than carefully considered training examples. The tablet
interface on the table informed participants as to which task
they would be performing, as well as when a particular
demonstration ended and their structure could be disassem-
bled. Participants were informed that the robot would be
testing four different learning algorithms, and that the robot
may occasionally ask questions of them.

During a task performance, participants would use a block
in their demonstration then press the corresponding button on
the tablet to inform the system of the utilized block. Upon
making a selection on the tablet, the screen would fade to
gray if a query were about to be performed, so the participant
would know not to continue until the robot finished its action.

Subsequent to the first demonstration for a each algorithm,
the robot would make queries. To perform a query, the robot
would move from its resting position and orient itself such
that it would be pointing at the block required for the queried
skill with its parallel bar gripper. Once the pointing behavior
was completed, a synthesized voice asked “Can you use
this one next?” before the robot returned to its resting pose.
After all robot motion was complete, the tablet screen would
display the normal interface and allow the participant to
continue. Participants were never given instructions regarding
the handling of the robot’s inquiries.

Participants were not told any details about the algorithms
other than that four were being tested. When the algorithmic
condition changed, participants were informed via the tablet
interface that the robot would be forgetting everything it had
just learned so it could accurately compare methods later.

VI. RESULTS

Six participants (4 female, 2 male) completed the exper-
iment, each providing 42 task demonstrations. Each partic-
ipant completed the experiment in about 55 minutes. The
data set consisting of the learned task graphs trained by



Fig. 4. Active learning strategies compared across tasks and data sets.

individuals is referenced as the solo data. A second data
set, referenced as the pair data, was created from combining
task graphs for each possible unique pairing of participants
(
(
6
2

)
= 15 pairs). A third data set, labeled triad data, was

created through the combination of every possible unique
outcome from selecting three participants (

(
6
3

)
= 20 triads).

We evaluated our data with the purpose of examining effects
that the different active learning strategies have for the three
task classes chosen, in the cases of either a single instructor
training in isolation or a small group of independently
collected, pooled instructor data.

We use the number of known unique paths through
the environment-space graph from the origin vertex to the
terminal vertex as the primary metric for determining the
degree of task comprehension achieved with each query
mechanism. Statistical results across were obtained using
one-way ANOVAs on path count (dependent variable) and
algorithmic condition (independent variable), separated by
task and number of instructors (figure 4).

A. Individual Training
For the single instructor demonstration data (N=6, total

demonstrations per task=4), only task 1 yielded significant
differences between query strategies. We conducted a one-
way ANOVA with number of known unique task execution
solutions (paths through the SMDP) as the dependent vari-
able and query strategy as the independent variable for each
task (1,2,3) and instructor condition (single, pairs, triad). For
the single instructor case of the first task, our analysis shows
a significant effect of query strategy (F(2,10) = 11.508, p <
0.01). Post-hoc tests with a Bonferroni adjustment indicate a
significant difference between the random and connectivity-
based algorithms (6.5, p < 0.05), as well as a marginally
significant difference between the random and distance-based
algorithms (5.667, p = 0.055). No significant difference was
found between algorithms for tasks 2 and 3 in the single
instructor scenario.

B. Joint Training
We investigated the effects of combining instructors’ data

to measure the utility of the feature-based query mechanisms

on multi-instructor scenarios. We are particularly interested
in this, as we seek to characterize the demonstration diversity
that can be obtained from pooling instructors together with
respect to the active learning strategy used. Our pilot study
results show that the feature-based query strategies encourage
diversity across teaching styles, leveraging each instructor’s
a priori task execution preferences to prompt novel demon-
strations. In section 7, we show that this diversity gained
from pooling instructors can be more beneficial for learning
task constraints than using a single instructor with the same
amount of demonstrations.

In this collaborative training scenario, feature-based query
strategies perform substantially better than the random query
condition. Most importantly, the distance-based query learner
completely learned the structure of the second task and
the connectivity-based strategy learned the second and third
task entirely. This result is motivating, as it suggests that
particular query strategies can greatly amplify the benefits
of joining different teaching styles. We proceeded to analyze
this impact by creating and comparing the pair and triad data
set for each task and querying algorithm.

In the pairs data (N=15, total demonstrations per task=8),
we find a significant effect of algorithm type for task 1
(F(2,28) = 17.381, p < 0.001) and task 2 (F(2,28) = 9.591,
p = 0.001). Post-hoc tests on the results for task 1 indicate
significant differences between random and connectivity-
based algorithms (9.1, p < 0.001) and between random and
distance-based algorithms (9.7, p < 0.01). Post-hoc tests
on the results for task 2 indicate a significant difference
between both the random and connectivity-based algorithms
(4.8, p < 0.01) and between the random and distance-
based algorithms (4.0, p < 0.05). In the second task, the
joint instruction process produced a training graph that
has a full understanding of the task structure after only 8
demonstrations spread across two non-interacting instructors
(4 demonstrations each). The overall performance increases
in the third task, but it is unclear that the improvement had
any connection to the querying process rather than merely
the higher demonstration count, likely due to the low number
of unique paths in the graph (6 total).



Fig. 5. Results for simulated active learning strategies, averaged over a set of 12 kinesthetically trained food preparation tasks.

Algorithm choice had a significant effect in the instruc-
tor triad data (N=20, total demonstrations=12) for task 1
(F(2,38) = 25.107, p < 0.001) and task 2 (F(2,38) = 85.597,
p < 0.001). In the first task, significant differences were
again found between random and the other two algorithms:
(9.5, p < 0.001) for connectivity-based and (11.65, p <
0.001) for distance-based. In the second task, there were
significant differences found between random and the other
two algorithms: (7.6, p < 0.001) for connectivity-based and
(6.1, p < 0.001) for distance-based.

VII. FURTHER ANALYSIS

The results of our first experiment suggested that dividing
task demonstrations across multiple instructors may be ideal
for maximizing training diversity. In this section, we not only
seek to validate our previous results with real-world tasks, but
also seek to investigate more directly comparable scenarios
where training demonstration counts are kept constant but
the number of instructors are varied across query algorithms.
For our second experiment, we evaluated the performance of
our query generation algorithms on learning a set of 12 real-
world inspired tasks. These tasks, from the food preparation
domain, contained more steps and more structural complexity
than the construction activities from the pilot study, contain-
ing 10 to 14 skills and 12 to 24 unique execution paths each.

To perform this analysis, we modeled the pilot study
participants’ behaviors regarding preferred demonstration
sequence, tendency towards unprompted demonstration de-
viations, and responses to robot queries for each task type
and built a simulation environment. An analysis across
participant data showed queries that could be accommodated
within 3 steps were heeded by the instructor, adjusting
her demonstration to cover the queried skill at the earliest
allowable time. Queries concerning skills beyond that time
horizon were disregarded and had no demonstrated effect
on instruction. Participants were likely to remain true to
their initial demonstration sequence for each task across
algorithms, though their choice of initial sequence appeared
to be motivated by the distance of blocks from them on the
table (subject to small random modifications for the blocks

furthest from the user). In our simulator, we assign each
instructor a preferred demonstration path with small random
perturbation based upon a fixed arbitrarily chosen canonical
base path. Instructor data was pooled in the same manner
as the pilot experiment: after all trials were completed, the
union of the resulting learner graphs was evaluated.

We simulated 50 trials of learning each task with condi-
tions identical to the pilot study (4 demonstrations per task, 3
queries allowed per demonstration, no queries during the ini-
tial demonstration). The simulation involved the production
of valid action orderings by virtual instructors, influenced
by queries posed from the simulated robot agent. The robot’s
learned task graph was constructed with a procedure identical
to that used in the live experiment. We compare results
between querying strategies in the multi-instructor and solo
instructor scenarios, presenting the mean percentage of task
comprehension in figure 5. In the single instructor scenario,
we see average task comprehension rates of 25.9%, 35.4%,
and 42.9% for the random query strategy at iterations 4, 8,
and 12, respectively. The connectivity-based query generator
posted average performances of 36.5%, 54.1%, and 65%,
while the distance-based learner achieved comprehension
rates of 54.6%, 61.5%, and 65.4%. For the multi-instructor
scenario, the random learners received demonstrations for
25.9%, 46.6%, and 61.2% of the possible solutions in the
graph. The connectivity-based learners were taught 36.6%,
52%, and 63.1% of graph solutions. Most effective in this
experiment, the distance-based algorithm produced average
comprehension rates of 54.6%, 76.6%, and 85.8% across all
tasks.

These results further highlight the result that these query-
ing strategies are not only effective, but effective in different
ways for each instructor. This is evidenced by the increased
task network coverage achieved by pooling groups of instruc-
tors together. Had the query strategies converged instructors
to the same teaching strategy, the pooled data would not
show an increase in diversity when compared against the
single instructor scenario (with identical total demonstration
count). These results also support the justification of using
a multi-instructor setup over a single instructor, even when



provided the same total training time, as the teaching style of
each instructor is expanded in non-convergent ways to cover
more of the task graph.

VIII. DISCUSSION AND CONCLUSION

Our results show that feature-based query strategies de-
rived from action-space graphs are a promising avenue to
explore within the task learning domain, especially under
the restriction of limited data collection. Task structure plays
a large role in determining the potential effectiveness of
a query, but did not differentiate between the two tested
methods enough to suggest a clear winner in our pilot study.
In our simulated validation on tasks derived from real world
activities, the distance-based querying mechanism showed
clear superiority in the multi-instructor domain.

We have utilized a graph representation for SMDPs called
the action-space graph to provide a set of simple features that
can be used to inform an active learner’s query generation,
obtaining more statistically effective training data from a hu-
man instructor than a traditional random exploration strategy.
We performed an analysis on the effectiveness of combined
instruction from our pilot study, looking at the effects of
creating pooled data from small teams of instructors. This
result was validated via a simulation of instructors based on
a model inspired by our pilot study participants, using a set
of 12 complex tasks derived from real-world activities.

Our simulated results reinforce the notion that, when
seeking to learn the constraint network of a task, utilizing
multiple instructors provides an implicit demonstration di-
versity benefit over the single instructor case, even given
the same total demonstration quantity. This diversity of user
preference enables a robot to more quickly learn valid skill
sequences by working with each instructors’ unique teaching
style to produce a wider range of demonstrations.

By increasing the effectiveness of training demonstrations,
we provide a way to reduce the human-oriented expense of
providing a robot with training data for a given task. The
query strategies utilized encouraged instructors to diversify
their examples significantly more, the benefits scaling well
with the number of instructors.

Our results suggest that learning complex task network
constraints from limited quantities of demonstrations is fea-
sible through small-scale collaboration when an effective
active learning query strategy is used. These contributions
are particularly applicable to collaborative robots that learn
from demonstration, helping to remove some of the barri-
ers to achieving task proficiency that have rendered more
autonomous learning techniques infeasible.
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