SHL accomplishes **hierarchical learning** for **socially cooperative tasks** between robots and humans operating in the same physical space on the same tasks. **Reinforcement learning** and **learning by demonstration** are leveraged for **primitive skills acquisition**. An SHL system learns a task decomposition encoding the structure of a plan derived from user interaction. Finally, the system learns how to assign roles in real-time, adapting SHL agents to collaborate with human co-workers to **improve team efficiency and performance** through **cooperative task execution**.

Primitive Skills Acquisition

Keyframe Based Skill Training
- Training designed for non-experts

Multi-scale Adaptive search Based Execution
- Dynamic environment, high dimensionality path planning

Feature Extraction for Intention Recognition
- Determining means-oriented and object-oriented intent

Social Modeling of Action Consequences
- Learn social effects of path choices

Task Decomposition

Learn Hierarchical Task Structure By Demonstration
- Receive sequence of skills as input

Determine Parallel Task Components
- Output tree with parallel tasks and role divisions identified

Visualize Representation Of Task To User
- Shared task representation between humans and robot

Determine Valid Subtask Assignments For Multiple Agents
- Account for agent proficiencies and preferences

Cooperative Task Execution

Dynamic Multi-agent Role Assignment
- Assign branches of subtasks to available agents

Real-time Performance Assessment
- Perform individual-agent assessment during operation

Live Agent-level Role Adaptation
- Re-assign roles based on agent preferences and abilities

Teammate Social Modeling
- Adapt skill executions to minimize team disruption