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Human-robot teaming has the potential 

to enable robots to perform well beyond 

their current limited and isolated roles. 

Many modern robotics advances remain 

inapplicable in domains where tasks are 

either too complex to properly encode, 

beyond modern hardware limitations, 

too sensitive for non-human completion, 

or too flexible for static automation 

practices.  

In these situations human-robot teaming 

can be leveraged to improve the 

efficiency, quality-of-life, and safety of 

human workers. We desire to create 

collaborative robots that can provide 

assistance when useful, remove dull or 

undesirable responsibilities when 

possible, and assist with dangerous tasks 

when feasible. 

Tasks are learned by observing action sequences and building SMDPs from 

recorded environment states and their associated action-based transitions. 
 

These SMDPs are converted into goal-centric Hierarchical Task Networks, 

where vertices indicate intermediate goals to be achieved during the task’s 

execution. 

Each goal state is 

representative of a collection 

of possible actions that may be 

taken from a valid previous 

task state to progress the 

activity. 
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Task Comprehension 

To facilitate the proper 
application of assistive 
behaviors, task execution is 
modeled as a multi-agent, 
goal-directed POMDP. 

Task progress is measured by determining 

which task goal the agent(s) are attempting 

to satisfy. We use active tools, occupied 

workspace areas, and work piece specific 

features alongside the task network to 

determine action intent and to identify any 

unexpected deviations. 
 

Special measures must be taken for multi-

agent scenarios, particularly when 

encountering human-in-the-loop 

coordination. For these situations, standard 

DEC-POMDP state estimation techniques do 

not apply for most practical problems, as 

solving within the human-robot collaboration 

domain is NEXP-Complete. 

Partial view of goal-directed POMDP for assembling an Ikea Chair. 
Speech bubbles denote observations from state transitions. 
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Task Execution 

Similar to learning tasks, once an HTN is 

known we can learn SMDPs by 

kinesthetic demonstration for many 

types of assistive behaviors. These 

learned behaviors may then be 

associated with the HTN goal state that is 

active at the time of training. 

 

The result of this behavior learning 

process is a system capable of following a 

co-worker’s progress through a task with 

the ability to render assistance or 

guidance when necessary. 

A goal-centric Hierarchical Task Network describing 
the goal steps for the assembly of an IKEA Chair, with 

attached assistive action SMDP 
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Assistive Behaviors Materials Stabilization Materials Retrieval 

Enhancing Awareness 

Retrieval behaviors can be 

autonomously generated using HTN 

state information to identify required 

materials. Once identified, a robot 

assistant may perform a pick-and-

place action to retrieve items for co-

workers.  
 

Individual user preference dictates 

the level of invasiveness of this 

behavior, ranging from placement 

nearby to a direct handover. 

Stabilization behaviors are 

synthesized from the combination of 

geometric properties of the held 

object and pose examples provided 

by the trainer.  

 

Kinesthetic guidance can provide a 

corrective signal for over-permissive 

bounds on acceptable workspace 

position, relative angle to co-worker, 

and proximity to other work pieces. 

Joint Object Manipulation 

Tandem object manipulation is useful 

when using unwieldy or cumbersome 

materials. Torque sensing can be used 

to detect failures (e.g., loss of tension 

or abrupt unexpected force) or 

collaborator-initiated motion. 
 

Joint manipulation can also be used to 

enhance a co-worker’s capabilities. For 

example, enforcing planar or axial 

constraints during tool usage to 

improve performance. 

Materials retrieval and stabilization 

actions can be augmented to provide 

awareness-enhancing behaviors that 

do not directly interact with the 

environment, such as positioning a 

camera or mirror to provide a better 

view.  

 

In common assembly domains, this 

may include shining a laser to 

indicate screw placements. 

Policy Optimization 

A robot assistant must optimize its action 

policy with both high- and low-level goals: 

 

At a high level, it chooses assistive 

behaviors to optimize its partner’s HTN 

execution path (subtask ordering) given 

considerations of other agents and 

available resources. 
 

At a low level, it should optimize for 

spending the minimum possible time 

spent achieving each particular goal. 
 

Given a task POMDP T, possible POMDP 

policies                  , assistive behavior 

execution policies                 , a state 

transition duration function d, and 

observations defining the probability 

function P describing the likelihood of a 

collaborator executing a given task policy, 

an optimal collaborator seeks to choose a 

set of assistive policies that maximizes: 
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