Interactive Machine Learning:
From Classifiers to Robotics

Brad Hayes Ece Kamar Matthew E. Taylor
Microso ft
iversi r WASHINGTON STATE
(@_J—I Souder” | O Resea I'C h [ UNIVERSITY

Bl




Training and Learning
in Sequential Tasks



Sequential Tasks

* VVersus pure Learning from Demonstration, we seek to:

* Minimize uncertainty
* Maximize smoothness

e Sequential Task
* Implicitly or Explicitly looks ahead
e Goal 1: Do what human wants you to do
e Goal 2: Outperform human and outperform autonomous learning



Section Outline

e Autonomous Learning: RL

e Demonstration + RL
e action selection
e shaping reward
* |IRL: shaping reward

e Learning from human feedback
* Treat as environment reward
* Treat as return
* Return + RL
* Treat as categorical feedback regrading policy



Reinforcement Learning (RL) Goals

e TD-Gammon beat Professionals: Tesauro, 1995
e Aibo Learned More Effective Gait: Kohl & Stone, 2004
* AlphaGo achieved Super-human performance: Silver et al., 2016

Learning autonomously is often better than hand-coding!

But not always!

B ETH:zirich

Vertical Jump

Boston Dynamics



RL Setting

Markov Decision Process (MDP)

¢ S: set of states in the world
J A set of actions an agent can perform
‘s 7} T: SxA — S (transition function)
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RL References

e Sutton & Barto, “Reinforcement Learning: An Introduction”
https://webdocs.cs.uaIberta.ca/"’suttonﬁbook/ebook/the-book.html

* Littman & Isbell Udacity course, “Reinforcement Learning”
https://classroom.udacity.com/courses/ud600/

e Szepesvari, “Algorithms for Reinforcement Learning”
https://sites.ualberta.ca/~szepesva/RLBook.html

e (Many others too)


https://webdocs.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
https://classroom.udacity.com/courses/ud600/
https://sites.ualberta.ca/%7Eszepesva/RLBook.html

RL & Speed

 Need data to learn. Can be equivalent to time
e Often start with random bias

Low Variance High Variance

* RL is worst at beginning (by definition?)

 Many techniques to achieve better Bias
e Transfer Learning
e Constrained action/state space
 Hand-coded generalization

Bias

Low

e Today: Bias from a human

High Bias




Section Outline

e Autonomous Learning: RL

* Demonstration + RL
* action selection
e shaping reward
* |IRL: shaping reward

e Learning from human feedback
* Treat as environment reward
* Treat as return
* Return + RL
* Treat as categorical feedback regrading policy



HAT: Human-Agent Transfer

1. Observe Human Demonstration (or suboptimal controller)

2. Summarize Policy
3. Bootstrap Autonomous Learning with summarized policy

* IF dist(K,,T;) >4
-> Hold Ball

« ELSEIF ang(K,,K,T,) > 45
—> Pass,

* ELSEIF ...

Hold Ball, Pass,, Pass, -

“Integrating Reinforcement Learning with Human Demonstrations of Varying Ability”. Taylor, Suay, & Chernova, 2011




HAT: Human-Agent Transfer

1. Human Demonstration
2. Summarize Policy
3. Autonomous Learning

In state s, evaluate agent’s 3 actions

And evaluate action suggested by decision list

e P(Execute): Take D(s) action
e P(Explore): Take random action
* P(Exploit): Take action w/ max Q




HAT: Human-Agent Transfer Results
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HAT: Human-Agent Transfer

Initiation: Student

Modality: Trajectories

Live/Offline: Offline

Present/Remote: N/A

Expertise: Any

Investment: N/A

Learning Paradigm: RL

Data Sources: Human provided + environment provided
Individual/Team Goal: Learner acts alone
Training/Testing: Tested on training task



Confidence HAT

e Goal: Improve Reinforcement Learning with Confidence-Based
Demonstrations

RL

“Improving Reinforcement Learning with Confidence-Based Demonstrations”. Wang & Taylor, IJCAI 2017



Confidence HAT

e Source demonstration quality?
e Source demonstration consistency?

Source m Confidence
Demonstration Model

e Summarization quality?
e Task coverage?

m Target Agent
Advice

15
“Improving Reinforcement Learning with Confidence-Based Demonstrations”. Wang & Taylor, 2017



Confidence HAT

e 3-step method:

Source m m Target Agent
Demonstration Advice

* Uncertainty measurement of demonstration
e Summarize demonstration data into confidence-based models
e Provide action suggestions along with confidence: let target agent decide (threshold)
* Integrate with RL, help improve initial learning and overall performance

Confidence

\YileYe =]
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“Improving Reinforcement Learning with Confidence-Based Demonstrations”. Wang & Taylor, 2017



Where does the confidence model come from?

Summarize the prior knowledge into Gaussian Process model

Plw;|x) = exp{—=(x — }Li)TZ,;l(.CL' — i)}

o Confidence Function




Keepaway Domain

Demonstration:
e State-action pairs of 20 episodes

GPHAT:

e Cluster active data (Pass1 & Pass2) into smaller
groups.

e Train Gaussian classifiers upon smaller clusters.

e Set a threshold. Follow GPHAT’s suggested action
with confidence higher than that. (e.g. 0.9 is a
reasonable value).

Probabilistic policy reuse:

e Prior knowledge would be reused with a decaying
probability

Cluster 2

Cluster3 |

Cluster 1
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DAgger (Dataset Aggregation)

Expert trajectory

Learned Policy
) ,..-——' %
No data on /
how to recover ;' ("-J

Iterative algorithm
Trains a stationary deterministic policy
No regret algorithm in an online learning setting

\

[under reasonable assumptions, it] “must find a
policy with good performance under the distribution
of observations it induces in such sequential
settings”

“A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning”. Ross, Gordon, & Bagnell, 2011



Initialize D « 0.

Initialize 71 to any policy in IL

fori=1to N do
Let m; = Iﬁiﬂ'* + (1 — ,Bt)ﬁ't
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D < D|JD;.
Train classifier ;1 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.

At the first iteration, it uses the expert’s policy to gather
a dataset of trajectories D and train a policy 7, that best
mimics the expert on those trajectories. Then at iteration
n, it uses 7, to collect more trajectories and adds those
trajectories to the dataset D. The next policy 7,11 is the
policy that best mimics the expert on the whole dataset D.

Insight:

1) Combine learned policy with
novel human demos

2) Train over all of human demos

3) Learn about areas of the state
space not initially reached
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AggreVaTe (Aggregate Values to Imitate)

 Expected future cost-to-go: Qf (s, a) of executing a in s, and then
following m for t-1 steps

e dt distribution of states at time t induced by executing policy
e Overall performance: J(r) = Y.f_, IESNd%[C(S,ﬂ(S))]
* Observe expert perform task

e At uniformly random time, explores an action a in state s, and then get
cost-to-go Q after performing this action

e Choose actions to minimize co-to-go instead of classification loss

“Reinforcement and Imitation Learning via Interactive No-Regret Learning”. Ross & Bagnell, 2014



Algorithm 1 AGGREVATE: Imitation Learning with Cost-To-Go

Initialize D « (), 7; to any policy in II.
fori =1to N do
Letm; = B;m* + (1 — B3;); #O0ptionally mix in expert’s own behavior.
Collect m data points as follows:
for 7 =1tomdo
Sample uniformly t € {1,2,...,T}.
Start new trajectory in some initial state drawn from initial state distribution
Execute current policy w; up to time £ — 1.
Execute some exploration action a; in current state s; at time ¢

Execute expert from time £ 4+ 1 to 1", and observe estimate of cost-to-go () starting at time £
end for )
Get dataset D; = {(s,t,a,Q)} of states, times, actions, with expert’s cost-to-go.
Agoregate datasets: D +— D[ JD;.
Train cost-sensitive classifier m;,, on D
(Alternately: use any online learner on the data-sets D; in sequence to get T; 11 )
end for
Return best 7; on validation.




e Task performance of learned
loss and the cost-to-go

e Task performance relates to t

policies: related to regret on regression

ne square root of the online learning

regret and the regression regret of the best regressor in the class to the

Bayes-optimal regressor on t

nis training data

» Potential drawback: “any method relying on cost-to-go estimates can
be impractical as collecting each estimate for a single state-action pair
may involve executing an entire trajectory”



LfD + Shaping Rewards: Similarity Based Shaping

e RL + LfD: RLFD
 Want high potential function when action was demonstrated nearby

e Given demonstrations & similarity/distance function:
* Create potential shaping function on the fly

e Think: placing Gaussians on demonstrated (s,a)
e Local reward shaping

“Reinforcement Learning from Demonstration through Shaping”. Brys, Harutyunyan, Suay, Chernova, Taylor, and Nowé, 2015.



LD + Shaping Rewards: Similarity Based Shaping

* Define similarity measure between states and

actions
)

0 if a # a?

: d _d —
sim(s,a, s a% ¥) = X o(—3(s—sHTS H(s—sY) ie . _ d

\
e Set potential to highest similarity among
demonstrated samples

b(s,a) = (E.?Eﬁ) sim(s,a,s%, a%, %)




e RL (Q(A)-learning)

e RLID (Q(\)-learning+shaping)

e RLID (Q(\)-learning+HAT)

e LfD (C4.5 decision tree classifier [Quinlan, 1993])
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Inverse Reinforcement Learning

MDP/R

* “Algorithms for Inverse Reinforcement Learning”. Ng & Russell, 2000.

* “Apprenticeship Learning via Inverse Reinforcement Learning”. Abbeel
& Ng, 2004.

Model-free IRL:

» “Relative Entropy Inverse Reinforcement Learning”. Boularias,
Kober, & Peters, 2011.



IRL + Shaping: Static IRL Shaping (SIS)

e Collect demonstrations: (s,a,,5,,S,,---)

e Learn reward function over states using IRL

 Use new reward function as potential-based shaping reward over states:
— F(s,a,s”) = yD(s')-D(s)
— R’ =R+F

e Potential function does not change over time

 The effect of shaping is that the agent’s exploration is less random and
the agent is biased towards states with high potential

“Learning from Demonstration for Shaping through Inverse Reinforcement Learning”. Suay, Brys,
Taylor, & Chernova, 2016



IRL + Shaping: Dynamic IRL Shaping (SIS)

Collect demonstrations: (s,,a4,5,,3,,...)
Learn reward function using states and actions IRL
Use dynamic shaping: F(s,a,t,s’,a’,t’) = yO(s’,a’,t’)-D(s,a,t)

Learn secondary Q-function online for potential function

— @,(s,a) € D,(s,a) + a,(rz (s) + YD, (s),a’)-D,(s,a))

— Q-function gets updated online after each observation
Now use this (changing) potential-based function:

— F=vy®d,(s’,a’)-D,(s,a) \
— R’ =R+F




e Autonomous Learning: RL

e Demonstration + RL
e action selection (time to go)
e shaping reward
* |IRL: shaping reward

e Learning from human feedback
* Treat as environment reward
* Treat as return
* Return + RL
* Treat as categorical feedback regrading policy



Learning Directly from Human Reward

* Sophie’s Kitchen
e Human trainer can award a scalar reward signal r = [-1, 1]

Algorithm 1 Q-Learning with Interactive Rewards:
s = last state, s’ = current state, a = last action, r = reward

1: while learning do
2:  a =random select weighted by @)[s, a] values
3:  execute a, and transition to s’
(small delay to allow for human reward)
4:  sense reward, r
5. update values:

Q[s,a] — Q[s, a]+a(r+y(maz, Q[s',a'])—Q|s, al)
6: end while

“Reinforcement Learning with Human Teachers: Evidence of Feedback and Guidance with Implications for Learning
Performance”. Thomaz & Breazeal, 2006.



Learning Directly from Human Reward

e Anticipatory Guidance Rewards

e “Even though our instructions clearly stated that communication of both
general and object specific rewards, we found many people assumed
that object specific rewards were future directed messages or guidance
for the agent. Several people mentioned this in the interview, and we
also find behavioral evidence in the game logs.”

* They provide
1) anticipatory reward (direct future) &
2) feedback for past actions



Algorithm 2 Interactive Q-Learning modified to incorporate
interactive human guidance in addition to feedback.

1: while learning do

2:  while waiting for guidance do

3: if receive human guidance message then

4: g = guide-object

5: end if

6: end while

7. if received guidance then

8: a = random selection of actions containing g

9: else
10: a = random selection weighted by Q[s, a| values
11:  end if

12:  execute a, and transition to s’

(small delay to allow for human reward)
13:  sense reward, r
14:  update values:

Qls, a] — Qls, al+a(r+y(maz,Q[s',a’])—Q]s, al)
15: end while




Learning from Human Rewards: Interactive Shaping

Key insight: trainer evaluates behavior using
model of its long-term quality

Learn a model of human reinforcement

H:SxA—->R

Directly exploit the model to determine action
Also, can combine with MDP’s reward

TAMER

http://www.bradknox.net/projects/

Firari Feli bbb

http://www.cincinnatireview.com/blog/tag/lion-tamer/


http://www.bradknox.net/projects/

TAMER Learning Tetris

Initial Training After 2 games of Training




TAMER+RL

e Reward shaping: R'(s,a) = R(s,a) + (8 * {I(s, a))
e 2 settings e Q augmentation: Q'(s,a) = Q(s,a) + (8 * H(s,a))
e Action biasing: Q'(s,a) = Q(s,a)+(8xH(s,a)) only

* Sequential during action selection

e Simultaneous e Control sharing: P(a=argmaz, [ﬁ(s, a)]) = min(B,1).
Otherwise use base RL agent’s action selection mech-
anism.

* [mportant points:
e Decaying influence
e Eligibility traces for reward

“Combining manual feedback with subsequent MDP reward signals for reinforcement learning”. Knox & Stone, 2010.
“Reinforcement Learning from Simultaneous Human and MDP Reward”. Knox & Stone, 2012.



Motivation: Dog Training

* Teach dog to sit & shake =
s 8

. —
Policy =
“Shake” > -ﬁ!.

* Mapping from observations to actions
e Feedback: {Bad Dog, Good Boy}



History of Evidence

* Feedback history h

&
i M
1+ -1'.-""‘

e Observation: “sit”, Action: -, Feedback: “Bad Dog”

&
e Observation: “sit”, Action: . ., Feedback: “Good Boy”

ey Wl

e Really make sense to assign numeric rewards to these?



Bayesian Framework

* Trainer desires policy A*
* h,is the training history at time t
* Find MAP hypothesis of A*:

argmax p(A* = Alh;) = argmax p(h¢|A\* = A)p(A* = A)
A A

Prior distribution over policies
Model of training process

“Learning behaviors via human-delivered discrete feedback: modeling implicit feedback strategies
to speed up learning”. Loftin, Peng, MacGlashan, Littman, Taylor, Huang, & Roberts, 2015



Strategy-Aware Bayesian Learning (SABL)

Assuming trainer feedback is given according to a
probabilistic model (with known x*, 1~ and ¢€)

- action was correct, with error probability €

- withhold or give explicit feedback, with probability 1™ and [

Compute a maximum likelihood estimate of
the target policy A given a training history h:

N = argmax\Pr[h|\, pu", 1, €




Strategy-Aware Bayesian Learning (SABL)

To a strategy-aware learner, the lack of feedback can be as
informative as explicit feedback

No feedback?

at is not what |
want, try
something else!




Infer Neutral

* Try to learn what no-reward (u* & ) means
 Don’t assume they’re balanced

* Many trainers don’t use punishment
* Neutral feedback = punishment

e Some don’t use reward
 Neutral feedback = reward




How Humans Reward

e Turkers & Dog Training Enthusiasts
* Explicitly reward good behavior? R+
e Explicitly punish bad behavior? P+

e Stay consistent over time?

P4+ P—

R+ | 93 125

R— 6 3
.od | R4/P+ R4+/P— R—/P+ R—/P—

begin

R+/P+ 65 4 2 0
R4+/P— 10 52 1 1
R—/P+ 2 1 4 1
R—/P— 0 0 0 1

Protect the Field




How Humans Reward

e Get the battery

e Eat the bird

e Point towards
the box \r

Protect the Field



Policy Shaping

e Simulated Oracle: theoretical analysis

e Combines human feedback with RL

e Positive and negative trainer feedback = discrete communication that
depends on trainer’s target policy

e Feedback can be correct [consistent] with some probability C and
human will provide feedback with some likelihood L

“Policy shaping: Integrating human feedback with reinforcement learning”. Griffith, Subramanian, Scholz, Isbell, & Thomaz, 2013



Policy Shaping

Difference between number of “right” and “wrong” labels: Ag ,

&S,ﬂ-
Prob s,a is optimal (binomial distribution): C
C&S*a _I_ (1 N C)&S,a
Combine probabilities of different actions based on learned Py (@)F:(a)
Q-values (Bayesian Q-Learning) and critique advice Y aca By (a)P.(a)

Very similar to Q-learning when

1. Small amount of human critique Pac-Man Frogger

2. Critigue equal among many s/a pairs

3. Human is right roughly half the time
(C is close to 0.5) .




Policy Shaping

e 2" paper: focus on human participants

e Participants: shown videos of recorded trajectories

e Goals:
e Humans vs. Oracle
e Value of silence

e Provide positive or negative feedback
e Error rate and assumptions re: +/- set by fixed params

“Policy Shaping With Human Teachers”. Cederborg, Grover, Isbell & Thomaz, 2015.



First

Policy Shaping

Then
evaluating v1:

Investigate: | |
. . Ther_w Th_en given new Fmally
e Humans can pro\“de good data for Shap|ng evaluating: instructions evaluating:
vZ2m v3m
* People have inherent bias regarding silence
 Can manipulate meaning of silence

SCORE: 0 SCORE: 0 SCORE: 0 SCORE: 0

Figure 1: Each teacher first plays the large board to the top

EXperimentS left. Then evaluates videos v1, v2 and v3. New instructions
are given based on what group the teacher has been assigned
e QOracle: simulated teacher to, then v2m and v3m are evaluated.

e Human-unbiased: a human teacher provides action critiques, with no
instruction about the meaning of silence.

e Human-positive bias: instruction that silence is positive

e Human-negative bias: with instruction that silence is negative



Policy Shaping
Primary result: Humans could give useful feedback

* “Even when giving instructions biasing silence towards bad, it is still better
to assume that silence means good.”

e “It could be that people tend to mean silence as good”

* “However, to fully convince ourselves of this we would need to experiment
on a variety of domains with different positive/ negative biases”



Aside: Learning lower-level skills

* (e.g., Dynamic Motion Primitives)
e Particularly important in Robotics

e “Reinforcement Learning in Robotics: A Survey”. Kober, Bagnell, &
Peters, 2013.



Open Questions: 1/2

* Two-way communication

e Asking for help

e Human knows what robot knows

* Robot knows human knows what robot knows
e Human knows robot knows human knows what robot knows...

e Steer human towards useful feedback
e Reciprocal interaction

e Human effective at shaping a given agent.

e “Eliciting good teaching from humans for machine
learners”. Cakmak & Thomaz, 2014

 “A Need for Speed: Adapting Agent Action Speed to Improve Task
Learning from Non-Expert Humans”. Peng+, 2016.

1] 5]

B
L
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e Curriculum Learning



Open Questions: 2/2

e Best way to teach people to teach?

e Different modalities
e LfD vs. LfF

e “Understanding Human Teaching Modalities in Reinforcement Learning
Environments: A Preliminary Report”. Knox, Taylor, & Stone. 2011

e Treating experts of different quality differently

e Testing with normal people
e “A practical comparison of three robot learning from demonstration algorithm”. Suay,
Toris, & Chernova, 2012.
e Crowdsourcing ?

 “The Robot Management System: A Framework for Conducting Human-Robot
Interaction Studies Through Crowdsourcing”. Toris, Kent, & Chernova, 2014.
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