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Problems with Robots

• Robots operate in a world they cannot 
properly model

• All models are wrong, some models are useful

• The data that a robot’s algorithms depend 
upon are noisy, non-iid, and occasionally 
non-stationary

• Human inputs help compensate for this
• Humans are also non-stationary data sources
• Humans also bias the samples they provide
• Humans don’t share preferences or strategies



Tutorial Goals for this section

• Gain intuition for how interactive machine learning is used in robotics
• Build familiarity with the terms and techniques used in the field

• Communicate important ideas for making robots useful in practice

• Build a deep understanding of statistical methods at the core of 
leading learning from demonstration methods

• Provide implementation-level detail for these techniques

• Walkthrough correctness or convergence proofs



Algorithmic Human-Robot Interaction
• Acquiring Skills and Tasks from Demonstration

• Trajectories and Keyframes for Kinesthetic Teaching: A Human-Robot Interaction Perspective
• Learning and Generalization of Complex Tasks from Unstructured Demonstrations
• Autonomously Constructing Hierarchical Task Networks for Planning and Human-Robot Collaboration
• Towards Robot Adaptability in New Situations

• Cooperative Task Execution
• Interpretable Activity Recognition
• Cooperative Inverse Reinforcement Learning
• Game-Theoretic Modeling of Human Adaptation in Human-Robot Collaboration
• Effective Robot Teammate Behaviors for Supporting Sequential Manipulation Tasks
• Improving Robot Controller Transparency Through Autonomous Policy Explanation

• Interaction Design:
• Designing Interactions for Robot Active Learners



Activity Recognition Workflow

Feature Extraction Keyframe Clustering 
(Usually KNN)

Point to Keyframe 
Classifier (Usually SVM)

HMM trained on 
keyframe sequences

Feature Extraction Keyframe Classification
HMM Likelihood 

Evaluation 
(Forward Algorithm)

Choose model with 
greatest posterior 

probability

Training

Testing



Activity Generation Workflow

Feature Extraction Keyframe Clustering 
(Usually KNN)

Point to Keyframe 
Classifier (Usually SVM)

Model trained on 
keyframe sequences

Model 
Selection

Keyframe 
Sampling

Motion 
Planning

Motor 
execution

Training

Sampling



Trajectories and Keyframes for Kinesthetic Teaching: 
A Human-Robot Interaction Perspective

[HRI 2012]
Baris Akgun, Maya Cakmak, Jae Wook Yoo, Andrea L. Thomaz



Trajectories and Keyframes for Kinesthetic Teaching: A 
Human-Robot Interaction Perspective

• Multiple methods exist for skill learning on a robot
• Kinesthetic teaching removes the correspondence problem
• When is it appropriate to perform trajectory-based learning?
• When is it appropriate to perform keyframe-based learning?



Trajectories and Keyframes for Kinesthetic Teaching: A 
Human-Robot Interaction Perspective

Sample demonstrations of the letter P in 2D

Keyframe
Demonstration

Trajectory 
Demonstration

Hybrid 
Demonstration



Trajectory Conversion

Continuous 
trajectories in 2D

Data converted 
to keyframes

Clustering of keyframes
and the sequential 
pose distributions

Learned model 
trajectory



Trajectory Conversion: 
Forward-Inverse Relaxation Model

• Fifth order splines used between positions to minimize jerk, using 
position, velocity, and acceleration per keyframe to compute the spline 
unknowns.

• Keyframes assume zero velocity/acceleration per point
• Trajectory demonstrations use the means from cluster centers.

A Computational Model for Cursive Handwriting Based on the Minimization Principle – Wada et al. 



Aligning Multiple Demonstrations



Implementation on PR2



Non-monolithic Task Representations

Can we learn and generalize multi-step tasks?
• Supports “life-long learning”
• Avoids dependency on isolated skill learning

• Expensive to require human attention and demonstration
• Automatic segmentation allows for better skill transfer

Can we impart more complicated feature spaces into our 
skill representations without sacrificing usability?



Skill Learning Wishlist

Recognize repeated instances of skills and generalize them to 
new settings. 

Segment data without a priori knowledge of task structure.

Identify broad, general classes of skills
(eg., manipulations, gestures, goal-based actions.) 

Skill policies should have a flexible encoding such that they 
can be improved over time.



Learning and Generalization of 
Complex Tasks from Unstructured 

Demonstrations

[IROS 2015 / IJRR]
Scott Niekum, Sarah Osentoski, George Konidaris, Andrew G. Barto



Learning and Generalization of Complex Tasks from 
Unstructured Demonstrations

• Model-free skill segmentation
• Using Bayesian nonparametric techniques

• Rapid policy learning
• Learning from Demonstration accelerates skill acquisition

• Activity recognition without task priors
• Using a Beta-Process Autoregressive Hidden Markov Model

• Flexible skill encoding
• Dynamic Movement Primitives



Task Learning Pipeline

• Task and skill representation created simultaneously 
from a continuous demonstration

• Recognizes re-used skills



Preprocessing/Segmentation
• Segmentation is performed using a BP-AR-HMM [1]

[1] Joint Modeling of Multiple Related Time Series via the Beta Process – Fox et al.

Draw a set of global weights for 
each segment

Draw Bernoulli Process params
for relevant segment selection

Construct transition vector for 
segment-segment transitions

Select a segment for each time 
step based on prev. segment

Observation computed as 
summed linear transforms of 
previous observations + noise



Skill Learning

• Skills are modeled as Dynamic Movement Primitives
• Linear point attractor modulated by a nonlinear (learned) function
• Uses end effector positions + quaternions for gripper rotation



Evaluation: Testing Segmentation

• Trained on demonstrations of the top task
• Tested on demonstrations of the bottom task

• Autonomously segmented skills and associated frames



Failure Modes

• Symbolic Failure
• Occurs when objects in the task description cannot be resolved 

(e.g., are missing from the environment)
• Remedied through suggestion of substitutions
• Possible corrections can be accepted or rejected due to 

pragmatic or preferential reasons.
• Allows propositions for which the robot does not have an object model

• Execution Failure
• Occurs when symbolic substitutions are accepted without a 

model sufficient for interaction
• Occurs when outside the known policy region of a skill



Application: Interactive Corrections



Abstraction is essential for solving complex problems

Task and motion planning Multi-agent coordination

Activity recognition Goal inference



Not all robots operate in isolation



Autonomously Constructing Hierarchical Task Networks for 
Planning and Human-Robot Collaboration

[ICRA 15]
Bradley Hayes and Brian Scassellati



Hierarchical Task Networks

Benefits
• Defines macro actions as compositions of 

primitive operators

• Provides a detailed problem factorization

• Operators are defined as 
(task, preconditions, effects)

• Facilitates look-ahead for increased execution 
flexibility (least-commitment planning)

Challenges
• Precise specifications of preconditions and 

effects can be difficult to specify 

• Typically defined manually



Constructing Task Networks from Demonstrations

1. Extract task subgoals using min-cut

2. Convert task graph to subgoal graph

3. Apply a series of contraction operators to the 
subgoal graph

4. Create macro actions out of totally and partially 
ordered sub-plans at each iteration of contraction



Extracting Sub-Goals:
Intuition – Bottleneck Recognition

[Q-Cut - Dynamic Discovery of Sub-Goals in Reinforcement Learning. Menache et al. 2002]

Problem Domain State Frequency Map



Application Domain - IKEA furniture
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Hierarchical Task Structure
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SMDP of “Attach Front Frame” Subtask
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SMDP of “Attach Front Frame” Subtask

Have L.Peg
…

Have R.Peg
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No clear structural 
cues!



State

Action

Get L.Peg

Get R.Peg

Place 
L.Peg

Place 
R.Peg
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Frame

Place 
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Goal

{    }

{    }
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Building Hierarchical Structure

Building a constraint-based 
hierarchy

Goal: 
Exploit existing structure to 
find logical groupings of 
sub-tasks
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Building Hierarchical Structure

Building a constraint-based 
hierarchy

Goal: 
Exploit existing structure to 
find logical groupings of task 
steps (sub-tasks)
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{Get L.Peg} o {Place 

R. Peg} o {Get R. 
Peg}

Step 0: Start Algorithm



Cliques

State

Action

A

B

Goal

{    }

{    }

{ A } { B }

{ A } o { B }

{ B } o { A }

Any edges inbound to a clique 
member must have identical 
inbound edges to all clique 
members.

Any edge outbound from a 
clique member to an external 
vertex must have identical 
outbound edges from all clique 
members to the same target.

All internal nodes must be 
connected without internal 
ordering constraints (only 
source vertex’s postconditions
can be on the edge 
requirements).



Cliques

Any edges inbound to a clique 
member must have identical 
inbound edges to all clique 
members.

Any edge outbound from a 
clique member to an external 
vertex must have identical 
outbound edges from all clique 
members to the same target.

All internal nodes must be 
connected without internal 
ordering constraints (only 
source vertex’s postconditions
can be on the edge 
requirements).

State

Action

A

B

Goal

{    }

{    }

{ A } { B }

{ A } o { B }

{ B } o { A }

Edges inbound to 
clique members 

are shared across 
all members with 

identical 
requirements



Cliques

State

Action

A

B

Goal

{    }

{    }

{ A } { B }

{ A } o { B }

{ B } o { A }

Outbound 
edges from 

clique members 
have identical 
requirements

Commutative compositions 
map to the same goal region

Any edges inbound to a clique 
member must have identical 
inbound edges to all clique 
members.

Any edge outbound from a 
clique member to an external 
vertex must have identical 
outbound edges from all
clique members to the same 
target.

All internal nodes must be 
connected without internal 
ordering constraints (only 
source vertex’s postconditions
can be on the edge 
requirements).



Cliques

State

Action

A

B

Goal

{    }

{    }

{ A } { B }

{ A } o { B }

{ B } o { A }

Internal nodes 
are completely 

connected

Any edges inbound to a clique 
member must have identical 
inbound edges to all clique 
members.

Any edge outbound from a 
clique member to an external 
vertex must have identical 
outbound edges from all clique 
members to the same target.

All internal nodes must be 
connected without internal 
ordering constraints (only 
source vertex’s postconditions
can be on the edge 
requirements).



Chains

Any edges inbound to a chain 
must only connect to the 
chain’s starting vertex.

All internal nodes must have in 
and out degree 1.

Any edges outbound from the 
chain must only originate from 
the chain’s terminating vertex.

State

Action

A B

{    } { A } { B } o { A }

C



Building Hierarchical Structure

Building a constraint-based 
hierarchy

Goal: 
Exploit existing structure to 
find logical groupings of task 
steps (sub-tasks)
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Building Hierarchical Structure

Task Hierarchy
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Building Hierarchical Structure
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Building Hierarchical Structure
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Building Hierarchical Structure
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Building Hierarchical Structure
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Context-sensitive Supportive Behavior Policies



Interpretable Models for Fast Activity Recognition and Anomaly 
Explanation During Collaborative Robotics Tasks

[ICRA 17]
Bradley Hayes and Julie Shah



Collaborative robots need to recognize human activities

• Nearly all collaboration models depend on some form of 
activity recognition

• Collaboration imposes real-time constraints on classifier 
performance and tolerance to partial trajectories



Related Work

Fast target prediction of human reaching motion for cooperative human-robot 
manipulation tasks using time series classification

(Perez D’Arpino ICRA15)
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Related Work

Fast target prediction of human reaching motion for cooperative human-robot 
manipulation tasks using time series classification

(Perez D’Arpino ICRA15)
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Related Work

Fast target prediction of human reaching motion for cooperative human-robot 
manipulation tasks using time series classification

(Perez D’Arpino ICRA15)
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Related Work

Fast target prediction of human reaching motion for cooperative human-robot 
manipulation tasks using time series classification

(Perez D’Arpino ICRA15)
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• Single Gaussian per timestep makes this fast
• Simple models are prone to misrepresenting data
• DTW alignment step vulnerable to anomalies



Common Activity Classifier Pipeline

Feature Extraction Keyframe Clustering 
(Usually KNN)

Point to Keyframe 
Classifier (Usually SVM)

HMM trained on 
keyframe sequences

Feature Extraction Keyframe Classification
HMM Likelihood 

Evaluation 
(Forward Algorithm)

Choose model with 
greatest posterior 

probability

Training

Testing

• P. Koniusz, A. Cherian, and F. Porikli, “Tensor representations via kernel linearization for action recognition from 3d skeletons.”
• Gori, J. Aggarwal, L. Matthies, and M. Ryoo, “Multitype activity recognition in robot-centric scenarios,” 
• E. Cippitelli, S. Gasparrini, E. Gambi, and S. Spinsante, “A human activity recognition system using skeleton data from rgbd sensors.” 
• L. Xia, C. Chen, and J. Aggarwal, “View invariant human action recognition using histograms of 3d joints.”



New Activity Recognition Approaches?

End-to-end Network

End-to-end Network



In real deployments, humans need to be 
able to understand robot decisions



In real deployments, humans need to be 
able to understand robot decisions

Key Insight:

Take concepts from successful CNN/RNN classifiers 
and apply them to more transparent methods



Rapid Activity Prediction Through 
Object-oriented Regression (RAPTOR)

Feature 
Extraction

Temporal 
Segmentation

Feature-wise 
Segmentation

Local Model 
Training

Ensemble 
Weight 

Learning

A highly parallel ensemble classifier that is 
resilient to temporal variations



Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation

Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning

Kinect Skeletal Joints VICON Markers

[Timestep x Feature] Matrix

Learned Feature Extractor



Activity Model Training Pipeline

Feature Extraction Temporal 
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Activity Model Training Pipeline
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Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation
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Segmentation Local Model Training Ensemble Weight 
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Two Temporal Segment Parameters: Width and Stride



Activity Model Training Pipeline
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Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation
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Segmentation Local Model Training Ensemble Weight 
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Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation

Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning

Object Map: 
Dictionary that maps IDs to sets of column indices

E.g., {“Hands”: [0,1,2,5,6,7]}
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Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation

Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning
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Within each temporal segment:
• Isolate columns of each demonstration 

trajectory according to (pre-defined) object map

• Create local model for each object



Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation

Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning

Within each temporal-object segment:

• Ignore temporal information for each data point

• Treat as general pattern recognition problem

• Model the resulting distribution using a GMM

Result: An activity classifier ensemble across objects and time!
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Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation

Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning
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…
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Need to find the most discriminative Object GMMs per time segment



Activity Model Training Pipeline

Feature Extraction Temporal 
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Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning

1 3
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Need to find the most discriminative Object GMMs per time segment

Random Forest Classifier



Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation

Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning

Need to find the most discriminative Object GMMs per time segment

Target Class
Demonstrations

Off-Target Class
Demonstrations

Random Forest Classifier
Likelihood 

Vector
Trajectories



Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation

Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning

• Choose top-N most discriminative features from the Random Forest classifier
• Weight each GMM proportional to its discriminative power

1 3
0 2 4

…
Object 
GMMs

0.0 .5 0.22 0.28



Activity Model Training Pipeline

Feature Extraction Temporal 
Segmentation

Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning

1 3
0 2 4

…
Object 
GMMs

0.0 .5 0.22 0.28

Feature Extraction Temporal 
Segmentation

Feature-wise 
Segmentation Local Model Training Ensemble Weight 

Learning

Result: Trained Highly Parallel Ensemble 
Learner with Temporal/Object-specific 

sensitivity

• Choose top-N most discriminative object-based classifiers
• Weight each object proportionally to its discriminative power



Results: Three Datasets

UTKinect Automotive Final Assembly Sealant Application

• UTKinect publicly available benchmark (Kinect Joints)

• Dynamic Actor Industrial Manufacturing Task (Joint positions)

• Static Actor Industrial Manufacturing Task (Joint positions)



Recognition Results: UTKinect-Action3D



Results: Online Prediction



Interpretability: Explaining Classifications

Asking a “carry” classifier about a “walk” trajectory:

“In the middle and end of the trajectory, the left 
hand and right hand features were very poorly 
matched to my template.” 

Key Insight:
• Apply outlier detection methods across internal activity classifiers
• Use outliers or lack thereof to explain issues across time and objects



Real-time Activity Segmentation and Classification



Classification vs. Segmentation

Which label belongs to this interval?

-121.914

-66.29

-0.462

-3.52



Classification vs. Segmentation

What are the right intervals?
Which intervals should get labels? 

Which labels should be where?



A Naïve Changepoint Detection Approach

IDEA: Run every activity classifier over 
every possible segment

• Given n frames:
• For every interval q in the range [0, n]:

• Evaluate each classifier on q

• Sort results by likelihood

• Assign class labels to uncovered intervals 
from highest likelihood classifications until 
no unlabeled frames remain

• Return timeline (list of intervals)

O(n2) intervals to evaluate

‘c’ classifiers to evaluate

Scenario
Duration: 2700 frames – 1.5 minutes of data
Classifiers: 11 – Avg run-time of 0.2s each

27002 * 0.2 = 1458000sec 
~16.88 days 

Classifiers must be ideal
(sensitive to trajectory length, 
non-overlapping, comparable 

tolerance to noise, etc.)



Particle Filtering for Changepoint Detection

• At each time step t:
• Create new particles for all eligible classes

• start_time = t – minimum_class_duration
• prev_interval = particle with highest MAP estimate in best[start_time]

• Evaluate existing particles’ likelihoods over the interval [p.start_time, t] and store as
(likelihood, p) tuples in particle_maps

• Terminate stale particles

Time

Si
gn

al

particle_maps[] – Sorted (MAP, particle) tuples for each timestep
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Particle Filtering for Changepoint Detection

• At each time step t:
• Create new particles for all eligible classes

• start_time = t – minimum_class_duration
• prev_interval = particle with highest MAP estimate in best[start_time]

• Evaluate existing particles’ likelihoods over the interval [p.start_time, t] and store as
(likelihood, p) tuples in particle_maps

• Terminate stale particles

Time

Si
gn

al

particle_maps[] – Sorted (MAP, particle) tuples for each timestep

= No longer ‘active’



Particle Filtering for Changepoint Detection

Time

Si
gn

al

particle_maps[] – Sorted (MAP, particle) tuples for each timestep

• At each time step t:
• Create new particles for all eligible classes

• start_time = t – minimum_class_duration 
• prev_interval = particle with highest MAP estimate in best[start_time]

• Evaluate existing particles’ likelihoods over the interval [p.start_time, t] and store as
(likelihood, p) tuples in particle_maps

• Terminate stale particles



Particle Filtering for Changepoint Detection

To extract the most likely segmentation:
• Set f = final frame index
• While f > 0 and particle_maps[f] != None:

• Take best (MAP, particle) at particle_maps index f
• Annotate segment [shape_start, f] with shape_class
• Set f = particle.start_time

Time
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al

particle_maps[] – Sorted (MAP, particle) tuples for each timestep
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Particle Filtering for Changepoint Detection

To extract the most likely segmentation:
• Set f = final frame index
• While f > 0 and particle_maps[f] != None:

• Take best (MAP, particle) at particle_maps index f
• Annotate segment [shape_start, f] with shape_class
• Set f = particle.start_time

Time

Si
gn

al

particle_maps[] – Sorted (MAP, particle) tuples for each timestep



Associating Robot Behaviors with Task States



Motion models in collaborative settings

At a high level, social force is a projection of an agent’s 
physical space occupation via its anticipated travel path 

Social force carries different meanings depending on the 
task and environmental contexts in which it is applied.

[Hayes and Scassellati ICDL13]



Motion models in collaborative 
settings

Field treatment dictates robot’s role

Attractive Repulsive Thresholded

Student Peer Instructor



Social Force in Human-Robot Teaming



Take a break (10 minutes)

Policy Shaping:
• Stand up
• Get Caffeine
• Go stand outside for a few minutes
• (Talk to someone about how IML relates to your work)



Cooperative Inverse Reinforcement Learning

[NIPS 2016]
Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, Stuart Russell



Inverse Reinforcement Learning Can Break Down in Team Scenarios!

• Traditional IRL is optimal if the reference demonstrations 
are “Expert” demonstrations.

• …but execution happens in isolation!

• Expert demonstrations are not always the most effective 
teaching strategy:

• Sometimes better to learn the landscape of the problem than 
to see a optimal demonstrations

• Properly crafted ‘imperfect’ demonstrations can better 
communicate information about the objective



The Shutdown Problem

Desired Behavior

Incorrigible Behavior Non-Functional Behavior

Slide credit: Dylan Hadfield-Menell, “Cooperative Inverse Reinforcement Learning”, CITRIS Workshop on Algorithmic Human-Robot Interaction. INRIA 2016.



The Shutdown Problem

Desired Behavior Incorrigible Behavior
Non-Functional 
Behavior

Slide credit: Dylan Hadfield-Menell, “Cooperative Inverse Reinforcement Learning”, CITRIS Workshop on Algorithmic Human-Robot Interaction. INRIA 2016.



Issues in Inverse Reinforcement Learning

• Uncertainty about task objectives is essential for cooperative behaviors

• IRL Pitfalls:
• Don’t want to just imitate the demonstrator

• Assumes the demonstrator is ‘unaware’ of being observed

• Action selection is independent of reward uncertainty

• Without modeling reward uncertainty, robot gets narrow view of environment 
dynamics and reward

• From Ramachandran and Amir’s “Bayesian Inverse Reinforcement Learning”:

• The optimal policy for an MDP with a distribution over reward functions R ~ P(R) is one 
that maximizes reward according to the expectation of R.



• Cooperative Inverse Reinforcement Learning 
• [Hadfield-Menell et al. NIPS 2016]

• Two players:

• Both players maximize a shared reward function, but only        
observes the actual reward signal;        only knows a prior 
distribution on reward functions

• learns the reward parameters by observing      

Proposal: Robot Plays Cooperative Game

Slide credit: Dylan Hadfield-Menell, “Cooperative Inverse Reinforcement Learning”, CITRIS Workshop on Algorithmic Human-Robot Interaction. INRIA 2016.



Cooperative Inverse Reinforcement Learning

[Hadfield-Menell arXiv ‘16]

Action sets for human and robot
Distribution over 

(parameterized) reward 
functions

Both act to maximize

Slide credit: Dylan Hadfield-Menell, “Cooperative Inverse Reinforcement Learning”, CITRIS Workshop on Algorithmic Human-Robot Interaction. INRIA 2016.



• t=-1  
• t=0        observes
• For t = 0, …

• and         observe 
• and        select         and         respectively
• New state                 is sampled from
• Both observe each other’s actions and collect reward  

Cooperative Inverse Reinforcement Learning

Slide credit: Dylan Hadfield-Menell, “Cooperative Inverse Reinforcement Learning”, CITRIS Workshop on Algorithmic Human-Robot Interaction. INRIA 2016.



Cooperative Inverse Reinforcement 
Learning

Environment

Slide credit: Dylan Hadfield-Menell, “Cooperative Inverse Reinforcement Learning”, CITRIS Workshop on Algorithmic Human-Robot Interaction. INRIA 2016.



• The distribution over state sequences is determined by 
a pair of policies: (       ,       )

• An ‘optimal’ policy pair maximizes the discounted sum 
of rewards

• In general, policies may depend on the entire 
observation histories

• The history of states and actions for both actors includes the 
reward parameter for the human

• [Hadfield-Menell ‘16] There exists an optimal policy pair 
that only depends on the current state and the robot’s 
belief

CIRL Properties



Incentives for Instructive Demonstrations

• Reduces the robot’s expected regret
• Reduces the KL Divergence of trajectory distributions
• Reduces reward errors

Further reading:

Game-Theoretic Modeling of Human Adaptation in Human-Robot 
Collaboration by Nikolaidis et al. 

HRI 2017

Extends CIRL, providing a model of human partial adaptation to a robot 
collaborator without adopting the robot’s policy as their own.



Effective Robot Teammate Behaviors for Supporting 
Sequential Manipulation Tasks

[IROS 2015]
Bradley Hayes and Brian Scassellati



Human figures out how and when
the robot can be helpful

Quickly enables useful, helpful actions.

Does not scale with task count!
Requires human expert

Robot figures out how and when
it can be helpful
• Allows for novel behaviors to be discovered
• Enables deeper task comprehension and action 

understanding

Can we do better than LfD for Skill Acquisition?

Demonstration-based
Methods

Goal-driven
Methods



Autonomously Generating Supportive Behaviors:
A Task and Motion Planning Approach

Perspective Taking Symbolic planning Motion planning

Autonomously Generated Supportive Behaviors



The TAMP problem is represented by the tuple: {A, O, C, s0, sG}

A is a set of (lead) agents

O is a set of operators (unparameterized motor primitives)

C is a capabilities mapping function between agents and operators

s0 is the set of predicates precisely specifying the start state

sG is the set of predicates specifying the goal state

Task and Motion Planning



The SB-TAMP problem is represented as the tuple: { T, ΠT, as, Cs, sc, P }

• T is a TAMP problem

• ΠT is a set of symbolic plans for T

• as is a supportive agent

• Cs is a mapping function indicating operators from T usable by as

• sc is the current environment state

• P is a set of partially or fully specified predicates describing prohibited 

environmental effects for support actions

Supportive Behavior TAMP



1. Propose alternative 
environments
- Change one thing about the 
environment

2. Evaluate if they facilitate the 
leader’s task/motion planning
- Simulate policy execution(s) from 
leader’s perspective

3. Compute cost of creating 
target environment
- Simulate support agent’s plan 
execution

4. Choose environment that 
maximizes [benefit – cost] 
- Execute supportive behavior plan

Supportive Behavior Pipeline: Intuition

Propose alternate environments

Evaluate Impacts 
on Leader

Evaluate Cost of 
Alterations

Manipulate scene to create best 
environment candidate



Supportive Behavior Pipeline

Lead Agent 
Planner Model Policies

Hypothetical 
Environment 

Generator

Current 
State

Support Agent 
Planner Policies

Initial State

Goal State

Initial State

Goal State

Goal 
Predicates

Multi-agent
Plan Evaluation

Policy 
Weighting 
Function

Support 
Policy

Current State
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Lead Agent 
Planner Model Policies

Hypothetical 
Environment 

Generator

Current 
State

Support Agent 
Planner Policies

Initial State

Goal State

Initial State

Goal State

Goal 
Predicates

Multi-agent
Plan Evaluation
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Weighting 
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Policy

Current State



Plan Evaluation
Choose the support policy (ξ ∈ Ξ) that minimizes the 

expected execution cost of the leader’s policy (π ∈ Π) to 
solve the TAMP problem T from the current state (sc)

• Cost estimate must account for 
• Resource conflicts (shared utilization/demand)
• Spatial constraints (support agent’s avoidance of lead)



Plan Evaluation
Choose the support policy (ξ ∈ Ξ) that minimizes the 

expected execution cost of the leader’s policy (π ∈ Π) to 
solve the TAMP problem T from the current state (sc)

• Cost estimate must account for 
• Resource conflicts (shared utilization/demand)
• Spatial constraints (support agent’s avoidance of lead)

Weighting function makes 
a big difference!



Weighting functions: 
Uniform, Greedy

Only the best-known solution is worth planning against

Min
duration

= 1

Consider all known solutions equivalently likely and important



Weighting functions: 
Uniform



Weighting functions:
Optimality-Proportional

Weight plans proportional to similarity vs. the best-known solution

p

p=2

Plan 
Weight

Plan Duration : Best Known Plan Duration



Weighting functions:
Optimality-Proportional



Weighting functions: 
Error Mitigation

f(π)

αwπ

Plans more optimal than some cutoff ε are treated normally, per f.

Suboptimal plans are negatively weighted, encouraging 
active mitigation behavior from the supportive robot.

α < 1
max
𝜋𝜋

𝑤𝑤𝜋𝜋
is a normalization term to avoid harm due to plan overlap



Weighting functions: 
Error Mitigation



Effect of Supportive Behaviors



Improving Robot Controller Transparency 
Through Autonomous Policy Explanation

[HRI 2017]
Bradley Hayes and Julie Shah



Shared Expectations are Critical for Teamwork

In close human-robot collaboration…

• Human must be able to plan around 
expected robot behaviors

• Understanding failure modes and 
policies are central to ensuring safe 
interaction and managing risk

Fluent teaming requires communication…

• When there’s no prior knowledge
• When expectations are violated
• When there is joint action



Semantics for Policy Transfer

When will you stop 
helping me pour the 
molten aluminum?



Semantics for Policy Transfer

I will terminate assist aluminum pouring
when the world is in the blue region of 
state space:



Semantics for Policy Transfer



Semantics for Policy Transfer



12.4827
5.12893
1.12419
0
0
1
3.62242
-40.241
…

15
7.125
1.12419
0
0
1
-8.1219
-40
…

12.4827
8.51422
1.12419
0
1
0
3.62242
-40.241
…

, , …

I will terminate assist aluminum 
pouring when the world is in state:



I will terminate assist aluminum 
pouring when the world is in state:

12.4827
5.12893
1.12419
0
0
1
3.62242
-40.241
…

15
7.125
1.12419
0
0
1
-8.1219
-40
…

12.4827
8.51422
1.12419
0
1
0
3.62242
-40.241
…

, , …

State space is too obscure to directly articulate



Motivation

Loads parts 
onto belt

Inspects 
parts

Advances 
parts



Motivation




Motivation




Motivation

Why did the robot not inspect the orange gear?

Camera malfunction?
Poor placement?
Arm fault?
Motion planner failure?
Incorrect policy?



Motivation

How do we diagnose and repair this fault?

Camera malfunction?

Poor placement
Arm fault?
Motion planner failure?
Incorrect policy?



State of the Art

int *detect_gear = &INPUT1; 
int *gear_x = &INPUT2; 

if (*detect_gear == 1 && *gear_x <= 10 && *gear_x >= 8) {
pick_gear(gear_x);

}

???



Establishing Shared Expectations

Collaborative Planning
[Milliez et al. 2016]

State Disambiguation
[Wang et al. 2016]

Short Term Long Term

Role-based Feedback
[St. Clair et al. 2016]

Coordination Graphs
[Kalech 2010]

Policy Dictation
[Johnson et al. 2006]

Legible Motion
[Dragan et al. 2013]

Hierarchical Task Models
[Hayes et al. 2016]



Reasonable question:
“Why didn’t you inspect the gear?”

Interpretable answer:
“My camera didn’t see a gear. I inspect 
the gear when it is less than 0.3m 
from the conveyor belt center and it 
has been placed by the gantry.”

Natural Interaction

Fault Diagnosis

Policy Explanation

Root Cause Analysis

“My camera didn’t see a gear. I inspect 
the gear when it is less than 0.3m 
from the conveyor belt center and it 
has been placed by the gantry.”



Making Control Systems More Interpretable

Approach:
1. Attach a smart debugger to monitor controller execution

2. Build a graphical model from observations

3. Use specialized algorithms to map queries to state regions

4. Collect relevant state region attributes

5. Minimally summarize relevant state regions with attributes

6. Communicate query response

Model Building

Query Analysis

Response Generation



Expectation Synchronization

Given Required

Policy model

Concept representations

Mapping from query to model

Mapping from model to response



Policy Modeling

States are composed of internal variables and externally sensed information

Actions are parameterized function calls observed from the controller

Transitions are learned by observing resultant states from function calls

Local, approximate behavioral models from observation
(Generate MDP from regular controller operation)

Regular controller execution

Behavioral MDPDeployment or simulation environment Control policy



Policy model

Concept representations

Mapping from query to model

Mapping from model to response

Given Required





Concept Representations

Concept library: generic state classifiers mapped to semantic 
templates that identify whether a state fulfills a given criteria

Set of Boolean classifiers: State  {True, False}
• Spatial concepts (e.g., “A is on top of B”)

• Domain-specific concepts (e.g., “Widget paint is drying”)

• Agent-specific concepts (e.g., “Camera is powered”)

on_top(A,B) camera_powered



Given Required




Policy model

Concept representations

Mapping from query to model

Mapping from model to response



Improving Control Policy Transparency

• When do you {action}?

• What will you do when 

{environmental conditions}?

• Why didn’t you do {action}?

Three template questions for synchronizing expectations:



Relevant Question Templates

When will you do {action}?



Relevant Question Templates

Why didn’t you do {action}?



Relevant Question Templates

What will you do when {conditions}?



Policy model

Concept representations

Mapping from query to model

Mapping from model to response

Given Required







Language Mapping: Model to Response

on_top(A,B) camera_powered

Recall: Concept library provides dictionary of 
classifiers that cover state regions



Using Concepts to Describe State Regions

We perform state-to-language mapping by applying 
a Boolean algebra over the space of concepts

This reduces concept selection to a set cover problem over state regions

Disjunctive normal form (DNF) formulae enable coverage over arbitrary 
geometric state space regions via intersections and unions of concepts

Templates provide a mapping from DNF  natural language



Query Response Process

When do 
you inspect 
the gear?

Find states where 
action {inspect(gear)} 
is most likely action

Detected_gear /\ at(conveyor_belt) 

Find concept mapping 
that covers the 
indicated states

Convert to natural language

I’ll inspect the gear 
when I’ve detected 

a gear and I’m at 
the conveyor belt.

Detected_gear
at(conveyor_belt) 



Producing Efficient Summaries

Achieving the succinctness criterion is NP-hard.
(choosing the minimal set of concepts with the best state region coverage precision)

The same problems in succinctness are encountered during circuit minimization:

Prime implicants are concept clauses covering minterms (target states)

Can use Quine-McCluskey Algorithm to find minimization

Q-M doesn’t scale well, but we can get approximate solutions using ESPRESSO,
with appropriate sacrifices of optimality or precision.



Policy model

Concept representations

Mapping from query to model

Mapping from model to response

Given Required








Why didn’t you inspect the part?When do you move right?

Result: Agents can explain their policies to collaborators

“I move right when the
cart is at the far left or
when the cart is in the
middle and the pole is
falling right or when
the cart is in the far
right and the pole is
stabilizing left.”

“I didn’t inspect the part
because the stock feed
signal is off. I inspect the
part when the stock feed
signal is on and I have
detected a part and the
part is within reach.”

“I will get the gear when I
am near a human-only
zone and I do not carry a
gear. I will move north
when I am near a human-
only zone and I carry a
gear.”

What do you do when near a human-only zone?



Designing Interactions for Robot 
Active Learners

Maya Cakmak, Crystal Chao, Andrea L. Thomaz
[TAMD 2010]



Passive vs. Active Learning

• Active Learning embeds robots in a tightly coupled dyadic 
interaction

• Improper handling of this interaction disengages the oracle!
• Disengagement leads to poor information quality

• Difficult to balance learning accuracy and learning speed with 
interaction smoothness

• Active Learning is a tool for increasing learner transparency



Experiment: Teaching Shape Composites



Version Space Learning

Teacher Actions: { “This is a <concept>.” | “This is not a <concept>.”| “Is this a <concept>?” }



Active Learning Gets Better Coverage

Humans have a tough time keeping track of their 
teaching progress, even for small instance spaces.



Subjective Measures

Active Learning modes are perceived as both more 
intelligent and more enjoyable to interact with

People preferred control over triggering the robot’s 
Active Learning mechanism.


